Câu hỏi:

13/07/2024 17,939 Lưu

Cho tam giác ABC có ba góc nhọn. Vẽ đoạn thẳng AD vuông góc với AB và bằng AB (D khác phía C đối với AB), vẽ đoạn thẳng AE vuông góc với AC và bằng AC (E khác phía B đối với AC).Chứng minh rằng: DC ⊥BE

Quảng cáo

Trả lời:

verified Giải bởi Vietjack

Giải sách bài tập Toán 7 | Giải sbt Toán 7

Gọi giao điểm DC và AB là H, giao điểm của CD và BE là K

Ta có: ΔABE = ΔADC (cmt)

⇒ ∠ABE = ∠ADC (hai góc t.ư)

hay ∠HBK = ∠ADH

+ ΔADH và ΔBKH đều có tổng ba góc trong mỗi tam giác bằng 180o nên có:

∠ADH + ∠DAH + ∠AHD = ∠BKH + ∠KHB + ∠HBK

Mà ∠AHD = ∠BHK (hai góc đối đỉnh)

∠ADH = ∠HBK (chứng minh trên)

Suy ra ∠DAH = ∠HKB

Mà ∠DAH = 90o nên ∠HKB = 90o

⇒ DC ⊥ BE (điều phải chứng minh)

Hữu Trí Đỗ

Hữu Trí Đỗ

sai that

Liên Nguyễn

Liên Nguyễn

Thật ko vậy để tớ đi check

tường anh nguyễn

tường anh nguyễn

giải sai r ạ

CÂU HỎI HOT CÙNG CHỦ ĐỀ

Lời giải

Giải sách bài tập Toán 7 | Giải sbt Toán 7

Xét Δ AOC và Δ BOD, ta có:

OA = OB ( Vì O là trung điểm của AB )

∠(AOC) =∠(BOD) (đối đỉnh)

OC = OD ( Vì O là trung điểm của CD)

Suy ra: ΔAOC = ΔBOD (c.g.c)

⇒∠A =∠B (hai góc tương ứng)

Vậy: AC // BD (vì có hai góc so le trong bằng nhau)

Lời giải

Giải sách bài tập Toán 7 | Giải bài tập Sách bài tập Toán 7

+) Xét ΔBMD và ΔCME có:

BM = MC (vì M là trung điểm BC)

MD = ME (giả thiết)

∠BMD = ∠EMC (hai góc đối đỉnh)

⇒ ΔBMD = ΔCME (c.g.c)

⇒ ∠D = ∠MEC (hai góc t.ư)

Mà hai góc này ở vị trí so le trong nên suy ra BD // CE.

Ta có AB ⊥ BD (giả thiết) và BD // CE (chứng minh trên) nên AB ⊥ CE

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP