Câu hỏi:

13/07/2024 13,899 Lưu

Cho tam giác đều ABC. Lấy các điểm D, E , F theo thứ tự thuộc các cạnh AB, BC và CA sao cho AD = BE = CF. Chứng minh rằng tam giác DEF là tam giác đều?

Quảng cáo

Trả lời:

verified Giải bởi Vietjack

Giải sách bài tập Toán 7 | Giải sbt Toán 7

Ta có: AB = AD +DB (1)

BC = BE + EC (2)

AC = AF + FC (3)

AB = AC = BC ( vì tam giác ABC là tam giác đều) (4)

AD = BE = CF ( giả thiết) (5)

Từ (1), (2), (3) và (4),(5) suy ra: BD = EC = AF

Xét ΔADF và ΔBED, ta có:

AD = BE (gt)

∠A =∠B =60o (vì tam giác ABC đều)

AF = BD (chứng minh trên)

suy ra: ΔADF= ΔBED (c.g.c)

⇒ DF=ED (hai cạnh tương ứng) (6)

Xét ΔADF và ΔCFE, ta có:

AD = CF (gt)

∠A =∠C =60o (vì tam giác ABC đều)

AF = CE (chứng minh trên)

suy ra: ΔADF= ΔCFE (c.g.c)

Nên: DF = FE (hai cạnh tương ứng) (7)

Từ (6) và (7) suy ra: DF = ED = FE

Vậy tam giác DFE đều

CÂU HỎI HOT CÙNG CHỦ ĐỀ

Lời giải

Giải sách bài tập Toán 7 | Giải sbt Toán 7

Ta có: DI // BC (giả thiết)

Suy ra:∠I1 =∠B1(so le trong) (1)

Lại có:∠B1 =∠B2 (2)

(vì BI là tia phân giác góc ABC)

Từ (1) và (2) suy ra:∠I1 =∠B2

=>∆BDI cân tại D =>BD=DI (3)

Mà IE // BC (gt) => ∠I2 =∠C1 (so le trong) (4)

Đồng thời: ∠C1=∠C2 (vì CI là phân giác của góc ACB) (5)

Từ (4) và (5) suy ra: ∠I2=∠C2. Suy ra ∠CEI cân tại E

Suy ra: CE = EI (6)

Từ (3) và (6) suy ra: BD + CE = DI + EI = DE

Lời giải

Giải sách bài tập Toán 7 | Giải sbt Toán 7

Ta có: BD là tia phân giác của ∠ABC (giả thiết)

Suy ra: Giải sách bài tập Toán 7 | Giải sbt Toán 7 (1)

Lại có: BE = BC (giả thiết)

=>∆BEC cân tại B (theo định nghĩa)

Suy ra: ∠E= ∠BCE (tính chất tam giác cân)

∆BEC có ABC là góc ngoài đỉnh B

=>∠ABC= ∠E + ∠BCE (tính chất góc ngoài tam giác)

Suy ra: ∠ABC=2∠E

Hay ∠E = (1/2)∠ABC (2)

Từ (1) và (2) suy ra: ∠E = ∠B1 = (1/2)∠ABC

Vậy BD // CE (vì có cặp góc ở vị trí đồng vị bằng nhau)

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP