Câu hỏi:

13/07/2024 5,155

Cho tam giác ABC vuông tại A. Các tia phân giác của các góc B và C cắt nhau tại I. Gọi D và E là chân các đường vuông góc kẻ từ I đến AB và AC. Chứng minh rằng AD = AE

Giải sách bài tập Toán 7 | Giải bài tập Sách bài tập Toán 7

Quảng cáo

Trả lời:

verified
Giải bởi Vietjack

Vì I là giao điểm các đường phân giác trong của B và C nên AI là tia phân giác của ∠A .

Suy ra: ID = IE (tính chất tia phân giác) (1)

Vì ΔADI vuông tại D có AI là tia phân giác góc A nên: Giải sách bài tập Toán 7 | Giải bài tập Sách bài tập Toán 7

Do đó: ΔADI vuông cân tại D

Suy ra: ID = DA (2)

Vì ΔAEI vuông tại E có Giải sách bài tập Toán 7 | Giải bài tập Sách bài tập Toán 7 nên ΔAEI vuông cân tại E

Suy ra: IE = AE (3)

Từ (1), (2) và (3) suy ra: AD = AE.

CÂU HỎI HOT CÙNG CHỦ ĐỀ

Lời giải

Giải sách bài tập Toán 7 | Giải bài tập Sách bài tập Toán 7

Kẻ MH ⊥ AB, MK ⊥ AC

Vì AM là tia phân giác của ∠(BAC) nên MH = MK (tính chất tia phân giác)

Xét hai tam giác MHB và MKC, ta có:

∠(MHB) = ∠(MKC) = 90º

MH = MK (chứng minh trên)

MB = MC (gt)

Suy ra: ΔMHB = ΔMKC (cạnh huyền, cạnh góc vuông)

Suy ra: ∠B = ∠C (hai góc tương ứng)

Vậy tam giác ABC cân tại A.

Lời giải

Trong ∆ABC, ta có:

∠A + ∠B + ∠C = 180o (tổng ba góc trong tam giác)

Suy ra: ∠B + ∠C = 180o - ∠A = 180o - 70o = 110o

Ta có:

∠(B1 ) = 1/2 ∠B (vì BD là tia phân giác)

∠(C1 ) = 1/2 ∠C (vì CE là tia phân giác)

Trong ∆BIC, ta có:

∠(BIC) + ∠(B1 ) + ∠(C1 ) = 180o (tổng 3 góc trong tam giác)

Suy ra: ∠(BIC) = 180o - (∠(B1 ) + ∠(C1)) = 180o - 1/2 (∠B + ∠C)

= 180o - 1/2 .110o = 125o

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP