Câu hỏi:

13/07/2024 5,075 Lưu

Cho tam giác ABC. Gọi I là điểm nằm trong tam giác và cách đều ba cạnh của tam giác đó. Qua I kẻ đường thẳng song song với BC cắt AB, AC lần lượt tại E và F. Chứng minh rằng EF = BE + CF.

Giải sách bài tập Toán 7 | Giải bài tập Sách bài tập Toán 7

Quảng cáo

Trả lời:

verified
Giải bởi Vietjack

Vì điểm I cách đều ba cạnh của tam giác ABC và nằm trong tam giác nên I là giao điểm của ba đường phân giác của tam giác ABC, tức là BI, CI lần lượt là tia phân giác của góc N và góc C. Do EF // BC nên ∠B1= ∠I1(so le trong), suy ra ∠I2 = ∠B2 .

Suy ra: BI, CI lần lượt là tia phân giác của góc B và góc C.

Do EF // BC nên ∠B1 = ∠BIE (so le trong).

Lại có: ∠B1 = ∠B2 ( vì BI là tia phân giác của góc B )

Suy ra: ∠B2 = ∠BIE

Vậy EF = EI + IF = BE + CF.

CÂU HỎI HOT CÙNG CHỦ ĐỀ

Lời giải

Giải sách bài tập Toán 7 | Giải bài tập Sách bài tập Toán 7

Kẻ MH ⊥ AB, MK ⊥ AC

Vì AM là tia phân giác của ∠(BAC) nên MH = MK (tính chất tia phân giác)

Xét hai tam giác MHB và MKC, ta có:

∠(MHB) = ∠(MKC) = 90º

MH = MK (chứng minh trên)

MB = MC (gt)

Suy ra: ΔMHB = ΔMKC (cạnh huyền, cạnh góc vuông)

Suy ra: ∠B = ∠C (hai góc tương ứng)

Vậy tam giác ABC cân tại A.

Lời giải

Trong ∆ABC, ta có:

∠A + ∠B + ∠C = 180o (tổng ba góc trong tam giác)

Suy ra: ∠B + ∠C = 180o - ∠A = 180o - 70o = 110o

Ta có:

∠(B1 ) = 1/2 ∠B (vì BD là tia phân giác)

∠(C1 ) = 1/2 ∠C (vì CE là tia phân giác)

Trong ∆BIC, ta có:

∠(BIC) + ∠(B1 ) + ∠(C1 ) = 180o (tổng 3 góc trong tam giác)

Suy ra: ∠(BIC) = 180o - (∠(B1 ) + ∠(C1)) = 180o - 1/2 (∠B + ∠C)

= 180o - 1/2 .110o = 125o

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP