Câu hỏi:

13/07/2024 11,115

Hai hộp chứa các quả cầu. Hộp thứ nhất chứa 3 quả đỏ và 2 quả xanh, hộp thứ hai chứa 4 quả đỏ và 6 quả xanh. Lấy ngẫu nhiên từ mỗi hộp một quả. Tính xác suất sao cho

a) Cả hai quả đều đỏ;

b) Hai quả cùng màu;

c) Hai quả khác màu.

Quảng cáo

Trả lời:

verified
Giải bởi Vietjack

Kí hiệu

A: "Quả lấy từ hộp thứ nhất màuđỏ" ;

B: "Quả lấy từ hộp thứ hai màuđỏ".

Ta thấy A và B độc lập.

a) Cần tính P(A ∩ B).

Ta có: P(A ∩ B) = P(A). P(B) = 0,24

b) Cần tính xác suất của C = (A  B)  (A  B)

Do tính xung khắc và độc lập của các biến cố, ta có

P(C) = P(A). P(B) + P(A). P(B) = 0,48

 

c) Cần tính P(C). Ta có P(C) = 1 − P(C) = 1 − 0,48 = 0,52

Bình luận


Bình luận

CÂU HỎI HOT CÙNG CHỦ ĐỀ

Lời giải

Không gian mẫu gồm các hoán vị của 6 người. Vậy n(Ω) = 6!

Kí hiệu A là biến cố : " Đứa bé được xếp giữa hai người đàn bà ";

B là biến cố : " Đứa bé được xếp giữa hai người đàn ông ".

a) Để tạo nên một cách xếp mà đứa bé được xếp giữa hai người đàn bà, ta tiến hành như sau :

- Xếp đứa bé ngồi vào ghế thứ hai đến ghế thứ năm. Có 4 cách.

- Ứng với mỗi cách xếp đứa bé, có 2 cách xếp hai người đàn bà.

- Khi đã xếp hai người đàn bà và đứa bé, xếp ba người đàn ông vào các chỗ còn lại. Có 3! cách.

Theo quy tắc nhân, ta có n(A) = 4.2.3! = 48.

Từ đó: Giải sách bài tập Toán 11 | Giải sbt Toán 11

b) Để tạo nên một cách xếp mà đứa bé ngồi giữa hai người đàn ông, ta tiến hành như sau :

- Xếp đứa bé vào các ghế thứ hai đến thứ năm. Có 4 cách.

- Chọn hai trong số ba người đàn ông. Có Giải sách bài tập Toán 11 | Giải sbt Toán 11 cách.

- Xếp hai người đàn ông ngồi hai bên đứa bé. Có 2 cách.

- Xếp ba người còn lại vào ba chỗ còn lại. Có 3! cách. Theo quy tắc nhân, ta có

Giải sách bài tập Toán 11 | Giải sbt Toán 11

Lời giải

Chọn 4 người để xếp vào 4 ghế ở dãy đầu : Có Giải sách bài tập Toán 11 | Giải sbt Toán 11 cách. Còn lại 3 người xếp vào 3 ghế ở dãy sau : có 3! cách.

Vậy có tất cả Giải sách bài tập Toán 11 | Giải sbt Toán 11 cách xếp.

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Vietjack official store
Đăng ký gói thi VIP

VIP +1 - Luyện thi tất cả các đề có trên Website trong 1 tháng

  • Hơn 100K đề thi thử, đề minh hoạ, chính thức các năm
  • Với 2tr+ câu hỏi theo các mức độ Nhận biết, Thông hiểu, Vận dụng
  • Tải xuống đề thi [DOCX] với đầy đủ đáp án
  • Xem bài giảng đính kèm củng cố thêm kiến thức
  • Bao gồm tất cả các bậc từ Tiểu học đến Đại học
  • Chặn hiển thị quảng cáo tăng khả năng tập trung ôn luyện

Mua ngay

VIP +3 - Luyện thi tất cả các đề có trên Website trong 3 tháng

  • Hơn 100K đề thi thử, đề minh hoạ, chính thức các năm
  • Với 2tr+ câu hỏi theo các mức độ Nhận biết, Thông hiểu, Vận dụng
  • Tải xuống đề thi [DOCX] với đầy đủ đáp án
  • Xem bài giảng đính kèm củng cố thêm kiến thức
  • Bao gồm tất cả các bậc từ Tiểu học đến Đại học
  • Chặn hiển thị quảng cáo tăng khả năng tập trung ôn luyện

Mua ngay

VIP +6 - Luyện thi tất cả các đề có trên Website trong 6 tháng

  • Hơn 100K đề thi thử, đề minh hoạ, chính thức các năm
  • Với 2tr+ câu hỏi theo các mức độ Nhận biết, Thông hiểu, Vận dụng
  • Tải xuống đề thi [DOCX] với đầy đủ đáp án
  • Xem bài giảng đính kèm củng cố thêm kiến thức
  • Bao gồm tất cả các bậc từ Tiểu học đến Đại học
  • Chặn hiển thị quảng cáo tăng khả năng tập trung ôn luyện

Mua ngay

VIP +12 - Luyện thi tất cả các đề có trên Website trong 12 tháng

  • Hơn 100K đề thi thử, đề minh hoạ, chính thức các năm
  • Với 2tr+ câu hỏi theo các mức độ Nhận biết, Thông hiểu, Vận dụng
  • Tải xuống đề thi [DOCX] với đầy đủ đáp án
  • Xem bài giảng đính kèm củng cố thêm kiến thức
  • Bao gồm tất cả các bậc từ Tiểu học đến Đại học
  • Chặn hiển thị quảng cáo tăng khả năng tập trung ôn luyện

Mua ngay