Câu hỏi:
11/07/2024 5,209Đường thẳng (d) song song với trục Ox và cắt trục tung Oy tại điểm C có tung độ bằng 2, theo thứ tự cắt các đường thẳng (1) và (2) tại D và E. Tìm tọa độ của các điểm D, E. Tính chu vi và diện tích tam giác ODE.
Sách mới 2k7: Tổng ôn Toán, Lí, Hóa, Văn, Sử, Địa…. kỳ thi tốt nghiệp THPT Quốc gia 2025, đánh giá năng lực (chỉ từ 110k).
Quảng cáo
Trả lời:
Qua điểm C trên trục tung có tung độ bằng 2, kẻ đường thẳng song song với Ox cắt đồ thị hàm số y = x tại D, cắt đồ thị hàm số y = 0,5x tại E.
Điểm D có tung độ bằng 2.
Thay giá trị y = 2 vào hàm số y = x ta được x = 2.
Vậy điểm D(2; 2)
Điểm E có tung độ bằng 2.
Thay giá trị y = 2 vào hàm số y = 0,5x ta được x = 4
Vậy điểm E(4; 2)
Gọi D’ và E’ lần lượt là hình chiếu của D và E trên Ox.
Ta có: OD’ = 2, OE’ = 4
Áp dụng định lí Pi-ta-go vào tam giác vuông ODD’, ta có:
Suy ra: OD =
Áp dụng định lí Pi-ta-go vào tam giác vuông OEE’, ta có:
20
Suy ra: OE =
Lại có: DE = CE – CD = 4 – 2 = 2
Chu vi tam giác ODE bằng: OD + DE + EO =
= 2
Diện tích tam giác ODE bằng: 1/2.DE.OC = 1/2.2.2 = 2
CÂU HỎI HOT CÙNG CHỦ ĐỀ
Câu 1:
Tìm hệ số góc của đường thẳng đi qua gốc tọa độ và đi qua điểm A(2; 1)
Câu 3:
Cho hai đường thẳng:
y = ax + b (d)
y = a’x + b’ (d’)
Chứng minh rằng: Trên cùng một mặt phẳng tọa độ, hai đường thẳng (d) và (d’) vuông góc với nhau khi và chỉ khi a.a’ = -1
Câu 4:
Qua điểm K(0; 2) vẽ đường thẳng (d) song song với trục Ox. Đường thẳng (d) cắt các đường thẳng (1) và (2) lần lượt tại A và B. Tìm tọa độ của các điểm A, B.
Câu 6:
Cho hàm số y = mx + (2m + 1) (1)
Với mỗi giá trị của m ∈ R, ta có một đường thẳng xác định bởi (1). Như vậy, ta có một họ đường thẳng các định bởi (1). Chứng minh rằng với mọi giá trị của m, họ đường thẳng xác định bởi (1) luôn đi qua một điểm cố định. Hãy xác định tọa độ của điểm đó.
về câu hỏi!