Câu hỏi:

11/07/2024 3,236

Với điều kiện nào của k và m thì hai đường thẳng sau trùng nhau?

y = kx + (m – 2)

y = (5 – k)x + (4 – m)

Quảng cáo

Trả lời:

verified
Giải bởi Vietjack

Hai đường thẳng y = kx + (m – 2) và y = (5 – k)x + (4 – m) trùng nhau khi và chỉ khi k = 5 – k và m – 2 = 4 – m

Ta có: k = 5 – k ⇔ 2k = 5 ⇔ k = 2,5

m – 2 = 4 – m ⇔ 2m = 6 ⇔ m = 3

Vậy với k = 2,5 và m = 3 thì hai đường thẳng y = kx + (m – 2) và y = (5 – k)x + (4 – m) trùng nhau.

CÂU HỎI HOT CÙNG CHỦ ĐỀ

Lời giải

Hai đường thẳng y = (a – 1)x + 2 và y = (3 – a)x + 1 có tung độ gốc khác nhau do vậy chúng song song với nhau khi và chỉ khi chúng có hệ số a bằng nhau.

Ta có: a – 1 = 3 – a ⇔ 2a = 4 ⇔ a = 2

Vậy với a = 2 thì hai đường thẳng y = (a – 1)x + 2 và y = (3 – a)x + 1 song song với nhau.

Lời giải

*Vẽ đồ thị hàm số y = 2x – 2 (d1)

Cho x = 0 thì y = -2. Ta có: (0; -2)

Cho y = 0 thì 2x – 2 = 0 ⇔ 2x = 2 ⇔ x = 1. Ta có: (1; 0)

Đồ thị hàm số đi qua hai điểm (0; -2) và (1; 0)

*Vẽ đồ thị hàm số y = - (4/3).x – 2 (d2)

Cho x = 0 thì y = -2. Ta có: (0; -2)

Cho y = 0 thì - (4/3).x – 2 = 0 ⇔ x = -1,5. Ta có: (-1,5; 0)

Đồ thị hàm số đi qua hai điểm (0; -2) và (-1,5; 0)

*Vẽ đồ thị hàm số y = (1/3).x + 3 (d3)

Cho x = 0 thì y = 3. Ta có: (0; 3)

Cho y = 0 thì (1/3).x + 3 = 0 ⇔ x = -9. Ta có: (-9; 0)

Đồ thị hàm số đi qua hai điểm (0; 3) và (-9; 0)Giải sách bài tập Toán 9 | Giải bài tập Sách bài tập Toán 9

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP