Câu hỏi:

13/07/2024 6,113

Trong mặt phẳng v = (2;1) cho, đường thẳng d có phương trình 2x − 3y + 3 = 0, đường thẳng d1 có phương trình 2x  3y  5 = 0.

Viết phương trình của đường thẳng d’ là ảnh của d qua Tv.

Sách mới 2k7: Tổng ôn Toán, Lí, Hóa, Văn, Sử, Địa…. kỳ thi tốt nghiệp THPT Quốc gia 2025, đánh giá năng lực (chỉ từ 110k).

Tổng ôn toán Tổng ôn lý Các môn khác

Quảng cáo

Trả lời:

verified
Giải bởi Vietjack

Lấy một điểm thuộc d, chẳng hạn M = (0; 1).

Khi đó M′ = Tv(M) = (0 − 2; 1 + 1) = (−2; 2) thuộc d'.

Vì d' song song với d nên phương trình của nó có dạng 2x − 3y + C = 0.

Do M' ∈ d′ nên 2.(−2) − 3.2 + C = 0. Từ đó suy ra C = 10 .

Do đó d' có phương trình 2x − 3y + 10 = 0.

CÂU HỎI HOT CÙNG CHỦ ĐỀ

Câu 1:

Trong mặt phẳng Oxy cho đường tròn (C) có phương trình x2 + y2  2x + 4y  4 = 0. Tìm ảnh của (C) qua phép tịnh tiến theo vectơ v = (2;5).

Xem đáp án » 13/07/2024 81,261

Câu 2:

Trong mặt phẳng Oxy cho đường thẳng d có phương trình 3x – y – 9 = 0. Tìm phép tịnh tiến theo vectơ có phương song song với trục Ox biến d thành đường thẳng d’ đi qua gốc tọa độ và viết phương trình đường thẳng d’.

Xem đáp án » 13/07/2024 12,730

Câu 3:

Trong mặt phẳng tọa độ Oxy cho vectơ v = (2; −1) , điểm M = (3; 2). Tìm tọa độ của các điểm A sao cho: A = Tv(M)

Xem đáp án » 13/07/2024 11,410

Câu 4:

Trong mặt phẳng tọa độ Oxy cho vectơ v = (2; −1) , điểm M = (3; 2). Tìm tọa độ của các điểm A sao cho: M = Tv(A)

Xem đáp án » 13/07/2024 7,379

Câu 5:

Trong mặt phẳng v = (2;1) cho, đường thẳng d có phương trình 2x − 3y + 3 = 0, đường thẳng d1 có phương trình 2x  3y  5 = 0.

Tìm tọa độ của w có giá vuông góc với đường thẳng d để d1 là ảnh của d qua Tw

Xem đáp án » 13/07/2024 6,688

Câu 6:

Cho đoạn thẳng AB và đường tròn (C) tâm O, bán kính r nằm về một phía của đường thẳng AB. Lấy điểm M trên (C), rồi dựng hình bình hành ABMM’. Tìm tập hợp các điểm M’ khi M di động trên (C).

Xem đáp án » 13/07/2024 6,544

Bình luận


Bình luận
Đăng ký gói thi VIP

VIP 1 - Luyện thi tất cả các đề có trên Website trong 1 tháng

  • Được thi tất cả các đề của các lớp có trên Khoahoc.vietjack.com
  • Ngân hàng câu hỏi trắc nghiệm theo các mức độ Nhận biết, Thông hiểu, Vận dụng, Vận dụng cao.
  • Luyện chuyên sâu, rèn tốc độ với trọn bộ đề thi thử, đề minh họa, chính thức các năm.
  • Hỏi bài tập với đội ngũ chuyên môn cao của chúng tôi.

Đặt mua

VIP 2 - Luyện thi tất cả các đề có trên Website trong 3 tháng

  • Được thi tất cả các đề của các lớp có trên Khoahoc.vietjack.com
  • Ngân hàng câu hỏi trắc nghiệm theo các mức độ Nhận biết, Thông hiểu, Vận dụng, Vận dụng cao.
  • Luyện chuyên sâu, rèn tốc độ với trọn bộ đề thi thử, đề minh họa, chính thức các năm.
  • Hỏi bài tập với đội ngũ chuyên môn cao của chúng tôi.

Đặt mua

VIP 3 - Luyện thi tất cả các đề có trên Website trong 6 tháng

  • Được thi tất cả các đề của các lớp có trên Khoahoc.vietjack.com
  • Ngân hàng câu hỏi trắc nghiệm theo các mức độ Nhận biết, Thông hiểu, Vận dụng, Vận dụng cao.
  • Luyện chuyên sâu, rèn tốc độ với trọn bộ đề thi thử, đề minh họa, chính thức các năm.
  • Hỏi bài tập với đội ngũ chuyên môn cao của chúng tôi.

Đặt mua

VIP 4 - Luyện thi tất cả các đề có trên Website trong 12 tháng

  • Siêu tiết kiệm - Được thi tất cả các đề của các lớp có trên Khoahoc.vietjack.com
  • Ngân hàng câu hỏi trắc nghiệm theo các mức độ Nhận biết, Thông hiểu, Vận dụng, Vận dụng cao.
  • Luyện chuyên sâu, rèn tốc độ với trọn bộ đề thi thử, đề minh họa, chính thức các năm.
  • Hỏi bài tập với đội ngũ chuyên môn cao của chúng tôi.

Đặt mua

Vietjack official store