Câu hỏi:

13/07/2024 930

Gọi AM, BN, CL lần lượt là ba đường cao của tam giác ABC. Chứng minh: Tam giác ANL và tam giác ABC đồng dạng

Quảng cáo

Trả lời:

verified
Giải bởi Vietjack

Giải sách bài tập Toán 9 | Giải bài tập Sách bài tập Toán 9

a. Xét hai tam giác BNA và CLA, ta có:

BNA = CLA = 90°

góc A chung

Suy ra BNA đồng dạng CLA (g.g)

Suy ra: AL/AN = AC/AB ⇒ AL/AC = AN/AB

Xét hai tam giác ABC và ANL, ta có:

AL/AC = AN/AB

góc A chung

Suy ra ABC đồng dạng ANL (c.g.c)

CÂU HỎI HOT CÙNG CHỦ ĐỀ

Lời giải

Giải sách bài tập Toán 9 | Giải bài tập Sách bài tập Toán 9

Vẽ đường cao AH. Đặt BH = x, CH = y thì do H nằm giữa B và C (hai góc B, C là góc nhọn) suy ra x + y = 4 (xem h.bs.18).

Ta có BH = AH = HC.tg30° nên x – y.tg30° = y/3

Giải sách bài tập Toán 9 | Giải bài tập Sách bài tập Toán 9

AC = 2AH ≈ 1,46. 2 = 2,92 (cm).

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP