Câu hỏi:
13/07/2024 3,206Gọi AM, BN, CL lần lượt là ba đường cao của tam giác ABC. Chứng minh: AN.BL.CM = AB.BC.CA.cosA.cosB.cosC
Câu hỏi trong đề: Giải Sách Bài Tập Toán 9 Tập 1 !!
Quảng cáo
Trả lời:
ABN vuông tại N nên AN = AB.cosB (1)
BCL vuông tại L nên BL = BC.cosB (2)
ACM vuông tại M nên CM = AC.cosC (3)
Từ (1), (2) và (3) suy ra: AN.BL.CM = AB.BC.CA. cosA cosB cosC
Hot: 500+ Đề thi vào 10 file word các Sở Hà Nội, TP Hồ Chí Minh có đáp án 2025 (chỉ từ 100k). Tải ngay
CÂU HỎI HOT CÙNG CHỦ ĐỀ
Lời giải
Vẽ đường cao AH. Đặt BH = x, CH = y thì do H nằm giữa B và C (hai góc B, C là góc nhọn) suy ra x + y = 4 (xem h.bs.18).
Ta có BH = AH = HC.tg nên x – y.tg = y/
AC = 2AH ≈ 1,46. 2 = 2,92 (cm).
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.