Câu hỏi:
13/07/2024 16,574Tam giác ABC nội tiếp đường tròn (O) có A > B > C. Gọi OH, OI, OK theo thứ tự là khoảng cách từ O đến BC, AC, AB. So sánh các độ dài OH, OI, OK.
Câu hỏi trong đề: Giải Sách Bài Tập Toán 9 Tập 1 !!
Quảng cáo
Trả lời:
Tam giác ABC có nên suy ra :
BC > AC > AB (cạnh đối diện góc lớn hơn thì lớn hơn)
Ta có AB, BC, AC lần lượt là các dây cung của đường tròn (O)
Mà BC > AC > AB nên suy ra:
OH < OI < OK (dây lớn hơn gần tâm hơn)
Hot: 500+ Đề thi vào 10 file word các Sở Hà Nội, TP Hồ Chí Minh có đáp án 2025 (chỉ từ 100k). Tải ngay
CÂU HỎI HOT CÙNG CHỦ ĐỀ
Lời giải
Kẻ OK ⊥ CD ⇒ CK = DK = (1/2).CD
Kẻ OH ⊥ AB ⇒ AH = BH = (1/2).AB
Vì AB // CD nên H, O, K thẳng hàng
Áp dụng định lí Pitago vào tam giác vuông OBH ta có:
Suy ra: = 225
OH = 15 (cm)
Áp dụng định lí Pitago vào tam giác vuông ODK ta có:
Suy ra: = 49
OK = 7 (cm)
* Trường hợp O nằm giữa hai dây AB và CD (hình a):
HK = OH + OK = 15 + 7 = 22 (cm)
* Trường hợp O nằm ngoài hai dây AB và CD (hình b):
HK = OH – OK = 15 – 7 = 8 (cm)
Lời giải
Gọi CD là dây bất kì đi qua I và CD không vuông góc với OI.
Kẻ OK ⊥ CD
Tam giác OKI vuông tại K nên OI > OK
Suy ra : AB < CD (dây lớn hơn gần tâm hơn)
Vậy dây AB vuông góc với IO tại I ngắn hơn mọi dây khác đi qua I.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.