Câu hỏi:

11/07/2024 2,148

Cho góc xOy khác góc bẹt, điểm A nằm trên tia Ox. Dựng đường tròn (I) đi qua A và tiếp xúc với hai cạnh của góc xOy

Quảng cáo

Trả lời:

verified
Giải bởi Vietjack

* Phân tích

Giả sử đường tròn (I) dựng được thỏa mãn điều kiện bài toán

- Đường tròn (I) tiếp xúc với Ox và Oy nên điểm I nằm trên tia phân giác của góc xOy

- Đường tròn (I) tiếp xúc với Ox tại A nên I nằm trên đường vuông góc với Ox kẻ từ A

Vậy I là giao điểm của tia phân giác góc xOy và đường thẳng vuông góc với Ox tại A

* Cách dựng

- Dựng tia phân giác của góc xOy

- Dựng đường thẳng vuông góc với Ox tại A cắt tia phân giác của góc xOy tại I

- Dựng đường tròn (I; IA)

* Chứng minh

Ta có: Ox ⊥ IA tại A nên Ox là tiếp tuyến của (I)

I nằm trên tia phân giác của góc xOy nên I cách đều hai cạnh Ox, Oy. Khi đó khoảng cách từ I đến Oy bằng IA nên Oy cũng là tiếp tuyến của đường tròn (I).

Vậy đường tròn (I) đi qua A và tiếp xúc với hai cạnh của góc xOy.

* Biện luận

Vì góc xOy nhỏ hơn 180° nên góc tạo bởi một cạnh của góc với tia phân giác là góc nhọn. Khi đó đường thẳng vuông góc với Ox tại A luôn cắt tia phân giác của góc xOy.

Giải sách bài tập Toán 9 | Giải bài tập Sách bài tập Toán 9

Bình luận


Bình luận

CÂU HỎI HOT CÙNG CHỦ ĐỀ

Lời giải

Giải sách bài tập Toán 9 | Giải bài tập Sách bài tập Toán 9

Gọi I là tiếp điểm của tiếp tuyến MN với đường tròn (O). Nối OI

Ta có: Giải sách bài tập Toán 9 | Giải bài tập Sách bài tập Toán 9 (hai góc kề bù)

OM là tia phân giác của góc AOI (tính chất hai tiếp tuyến cắt nhau)

ON là tia phân giác của góc BOI (tính chất hai tiếp tuyến cắt nhau)

Suy ra : OM ⊥ ON (tính chất hai góc kề bù)

Vậy Giải sách bài tập Toán 9 | Giải bài tập Sách bài tập Toán 9

Lời giải

Giải sách bài tập Toán 9 | Giải bài tập Sách bài tập Toán 9

Ax ⊥ AB

By ⊥ AB

Suy ra: Ax // By hay AC // BD

Trong tam giác BND, ta có AC // BD

Suy ra: ND/NA = BD/AC (hệ quả định lí Ta-lét)     (1)

Theo tính chất hai tiếp tuyến cắt nhau, ta có:

AC = CM và BD = DM      (2)

Từ (1) và (2) suy ra: ND/NA = MD/MC

Trong tam giác ACD, ta có: ND/NA = MD/MC

Suy ra: MN // AC (theo định lí đảo định lí Ta-lét)

Mà: AC ⊥ AB (vì Ax ⊥ AB)

Suy ra: MN ⊥ AB

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Vietjack official store
Đăng ký gói thi VIP

VIP +1 - Luyện thi tất cả các đề có trên Website trong 1 tháng

  • Hơn 100K đề thi thử, đề minh hoạ, chính thức các năm
  • Với 2tr+ câu hỏi theo các mức độ Nhận biết, Thông hiểu, Vận dụng
  • Tải xuống đề thi [DOCX] với đầy đủ đáp án
  • Xem bài giảng đính kèm củng cố thêm kiến thức
  • Bao gồm tất cả các bậc từ Tiểu học đến Đại học
  • Chặn hiển thị quảng cáo tăng khả năng tập trung ôn luyện

Mua ngay

VIP +3 - Luyện thi tất cả các đề có trên Website trong 3 tháng

  • Hơn 100K đề thi thử, đề minh hoạ, chính thức các năm
  • Với 2tr+ câu hỏi theo các mức độ Nhận biết, Thông hiểu, Vận dụng
  • Tải xuống đề thi [DOCX] với đầy đủ đáp án
  • Xem bài giảng đính kèm củng cố thêm kiến thức
  • Bao gồm tất cả các bậc từ Tiểu học đến Đại học
  • Chặn hiển thị quảng cáo tăng khả năng tập trung ôn luyện

Mua ngay

VIP +6 - Luyện thi tất cả các đề có trên Website trong 6 tháng

  • Hơn 100K đề thi thử, đề minh hoạ, chính thức các năm
  • Với 2tr+ câu hỏi theo các mức độ Nhận biết, Thông hiểu, Vận dụng
  • Tải xuống đề thi [DOCX] với đầy đủ đáp án
  • Xem bài giảng đính kèm củng cố thêm kiến thức
  • Bao gồm tất cả các bậc từ Tiểu học đến Đại học
  • Chặn hiển thị quảng cáo tăng khả năng tập trung ôn luyện

Mua ngay

VIP +12 - Luyện thi tất cả các đề có trên Website trong 12 tháng

  • Hơn 100K đề thi thử, đề minh hoạ, chính thức các năm
  • Với 2tr+ câu hỏi theo các mức độ Nhận biết, Thông hiểu, Vận dụng
  • Tải xuống đề thi [DOCX] với đầy đủ đáp án
  • Xem bài giảng đính kèm củng cố thêm kiến thức
  • Bao gồm tất cả các bậc từ Tiểu học đến Đại học
  • Chặn hiển thị quảng cáo tăng khả năng tập trung ôn luyện

Mua ngay