Câu hỏi:

11/07/2024 4,161

Cho nửa đường tròn tâm O có đường kính AB. Vẽ các tiếp tuyến Ax, By (Ax, By và nửa đường tròn thuộc cùng một mặt phẳng bờ AB). Gọi M là một điểm bất kì thuộc nửa đường tròn. Tiếp tuyến tại M cắt Ax, By theo thứ tự ở C và D. Tìm vị trí của C, D để hình thang ABCD có chu vi bằng 14cm, biết AB = 4cm

Quảng cáo

Trả lời:

verified
Giải bởi Vietjack

Giải sách bài tập Toán 9 | Giải bài tập Sách bài tập Toán 9

Chu vi hình thang ABDC bằng: AB + 2CD (chứng minh trên)

Suy ra: 14 = 4 + 2.CD ⇒ CD = 5 (cm)

Hay CM + DM = 5 ⇒ DM = 5 – CM (1)

Tam giác COD vuông tại O có OM ⊥ CD

Theo hệ thức lượng trong tam giác vuông, ta có:

OM2 = CM.DM ⇔ 22 = CM.DM ⇔ 4 = CM.DM (2)

Thay (1) vào (2) ta có: CM.(5 – CM) = 4

⇔ 5CM – CM2 – 4 = 0 ⇔ 4CM – CM2 + CM – 4 = 0

⇔ CM(4 – CM) + (CM – 4) = 0 ⇔ CM(4 – CM) – (4 – CM) = 0

⇔ (CM – 1)(4 – CM) = 0 ⇔ CM – 1 = 0 hoặc 4 – CM = 0

⇔ CM = 1 hoặc CM = 4

Vì CM = CA (chứng minh trên) nên AC = 1 (cm) hoặc AC = 4 (cm)

Vậy điểm C cách điểm A 1cm hoặc 4cm thì hình thang ABDC có chu vi bằng 14.

Bình luận


Bình luận

CÂU HỎI HOT CÙNG CHỦ ĐỀ

Lời giải

Giải sách bài tập Toán 9 | Giải bài tập Sách bài tập Toán 9

Gọi I là tiếp điểm của tiếp tuyến MN với đường tròn (O). Nối OI

Ta có: Giải sách bài tập Toán 9 | Giải bài tập Sách bài tập Toán 9 (hai góc kề bù)

OM là tia phân giác của góc AOI (tính chất hai tiếp tuyến cắt nhau)

ON là tia phân giác của góc BOI (tính chất hai tiếp tuyến cắt nhau)

Suy ra : OM ⊥ ON (tính chất hai góc kề bù)

Vậy Giải sách bài tập Toán 9 | Giải bài tập Sách bài tập Toán 9

Lời giải

Giải sách bài tập Toán 9 | Giải bài tập Sách bài tập Toán 9

Ax ⊥ AB

By ⊥ AB

Suy ra: Ax // By hay AC // BD

Trong tam giác BND, ta có AC // BD

Suy ra: ND/NA = BD/AC (hệ quả định lí Ta-lét)     (1)

Theo tính chất hai tiếp tuyến cắt nhau, ta có:

AC = CM và BD = DM      (2)

Từ (1) và (2) suy ra: ND/NA = MD/MC

Trong tam giác ACD, ta có: ND/NA = MD/MC

Suy ra: MN // AC (theo định lí đảo định lí Ta-lét)

Mà: AC ⊥ AB (vì Ax ⊥ AB)

Suy ra: MN ⊥ AB

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Vietjack official store
Đăng ký gói thi VIP

VIP +1 - Luyện thi tất cả các đề có trên Website trong 1 tháng

  • Hơn 100K đề thi thử, đề minh hoạ, chính thức các năm
  • Với 2tr+ câu hỏi theo các mức độ Nhận biết, Thông hiểu, Vận dụng
  • Tải xuống đề thi [DOCX] với đầy đủ đáp án
  • Xem bài giảng đính kèm củng cố thêm kiến thức
  • Bao gồm tất cả các bậc từ Tiểu học đến Đại học
  • Chặn hiển thị quảng cáo tăng khả năng tập trung ôn luyện

Mua ngay

VIP +3 - Luyện thi tất cả các đề có trên Website trong 3 tháng

  • Hơn 100K đề thi thử, đề minh hoạ, chính thức các năm
  • Với 2tr+ câu hỏi theo các mức độ Nhận biết, Thông hiểu, Vận dụng
  • Tải xuống đề thi [DOCX] với đầy đủ đáp án
  • Xem bài giảng đính kèm củng cố thêm kiến thức
  • Bao gồm tất cả các bậc từ Tiểu học đến Đại học
  • Chặn hiển thị quảng cáo tăng khả năng tập trung ôn luyện

Mua ngay

VIP +6 - Luyện thi tất cả các đề có trên Website trong 6 tháng

  • Hơn 100K đề thi thử, đề minh hoạ, chính thức các năm
  • Với 2tr+ câu hỏi theo các mức độ Nhận biết, Thông hiểu, Vận dụng
  • Tải xuống đề thi [DOCX] với đầy đủ đáp án
  • Xem bài giảng đính kèm củng cố thêm kiến thức
  • Bao gồm tất cả các bậc từ Tiểu học đến Đại học
  • Chặn hiển thị quảng cáo tăng khả năng tập trung ôn luyện

Mua ngay

VIP +12 - Luyện thi tất cả các đề có trên Website trong 12 tháng

  • Hơn 100K đề thi thử, đề minh hoạ, chính thức các năm
  • Với 2tr+ câu hỏi theo các mức độ Nhận biết, Thông hiểu, Vận dụng
  • Tải xuống đề thi [DOCX] với đầy đủ đáp án
  • Xem bài giảng đính kèm củng cố thêm kiến thức
  • Bao gồm tất cả các bậc từ Tiểu học đến Đại học
  • Chặn hiển thị quảng cáo tăng khả năng tập trung ôn luyện

Mua ngay