Câu hỏi:

04/05/2020 512

Gọi A’, B’ và C’ tương ứng là ảnh của ba điểm A, B và C qua phép đồng dạng. Chứng minh rằng nếu AB = pAC thì A'B' = pA'C', trong đó p là một số. Từ đó chứng minh rằng phép đồng dạng biến ba điểm thẳng hàng thành ba điểm thẳng hàng và nếu điểm B nằm giữa hai điểm A và C thì điểm B' nằm giữa hai điểm A’ và C’.

Quảng cáo

Trả lời:

verified
Giải bởi Vietjack

Để ý rằng

Giải sách bài tập Toán 11 | Giải sbt Toán 11

Ta có:

Giải sách bài tập Toán 11 | Giải sbt Toán 11

Từ đó suy ra Giải sách bài tập Toán 11 | Giải sbt Toán 11

Giả sử ba điểm A, B, C thẳng hàng và điểm B nằm giữa hai điểm A và C. Khi đó AB = tAC, với 0 < t < 1. Áp dụng bài 1.39 ta cũng có A'B = tA'C', với 0 < t < 1. Do đó ba điểm A′, B′, C′ thẳng hàng và điểm B' nằm giữa hai điểm A' và C'.

CÂU HỎI HOT CÙNG CHỦ ĐỀ

Lời giải

Lấy điểm N(x1; y1), thì điểm N(2x1  1; 2y1 + 3) = F(N) . Ta có

Giải sách bài tập Toán 11 | Giải sbt Toán 11

Từ đó suy ra với hai điểm M, N tùy ý và M', N' lần lượt là ảnh của chúng qua F ta có M′N′ = 2MN. Vậy F là phép đồng dạng với tỉ số đồng dạng là 2.

Lời giải

Gọi M′(x′;y′) ∈ d′ là ảnh của M(x,y) ∈ d qua phép tịnh tiến theo vecto v(2;3)

Giải sách bài tập Toán 11 | Giải sbt Toán 11

Do M(x,y) ∈ d nên

3x − 5y + 3 = 0

⇒ 3(x′−2) − 5(y′−3) + 3 = 0

⇔ 3x′ − 5y′ + 12 = 0 (d′)

Vậy M′(x′;y′) ∈ d′: 3x′ − 5y′ + 12 = 0

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP