Câu hỏi:
04/05/2020 1,070Dựng tam giác BAC vuông cân tại A có C là một điểm cho trước, còn hai đỉnh A, B lần lượt thuộc hai đường thẳng a, b song song với nhau cho trước.
Sách mới 2k7: Tổng ôn Toán, Lí, Hóa, Văn, Sử, Địa…. kỳ thi tốt nghiệp THPT Quốc gia 2025, đánh giá năng lực (chỉ từ 110k).
Quảng cáo
Trả lời:
Xem B là ảnh của A qua phép đồng dạng có được bằng cách thực hiện liên tiếp phéo quay tâm C góc hoặc và phép vị tự tâm C tỉ số . Vì A thuộc a nên B thuộc đường thẳng a’ là ảnh của a qua phép đồng dạng nói trên. Vậy b là giao của a’ và b. Từ đó suy ra cách dựng . Bài toán có hai nghiệm hình.
CÂU HỎI HOT CÙNG CHỦ ĐỀ
Câu 1:
Trong mặt phẳng Oxy xét phép biến hình F biến mỗi điểm M(x;y) thành M′(2x − 1; −2y + 3). Chứng minh F là một phép đồng dạng.
Câu 2:
Trong mặt phẳng Oxy cho đường thẳng d có phương trình 3x − 5y + 3 = 0 và vectơ . Hãy viết phương trình đường thẳng d’ là ảnh của d qua phép tịnh tiến theo vectơ .
Câu 3:
Trong mặt phẳng Oxy cho đường thẳng d có phương trình 3x − 2y – 6 = 0
a) Viết phương trình của đường thẳng là ảnh của d qua phép đối xứng qua trục Oy
b) Viết phương trình của đường thẳng là ảnh của d qua phép đối xứng qua đường thẳng Δ có phương trình
Câu 4:
Trong mặt phẳng Oxy cho đường thẳng d có phương trình x + y – 2 = 0. Hãy viết phương trình của đường thẳng d’ là ảnh của d qua phép quay tâm O góc .
Câu 5:
Cho đường tròn (C) và hai điểm cố định phân biệt A, B thuộc (C). Với mỗi điểm M chạy trên đường tròn (trừ hai điểm A, B), ta xét điểm N sao cho ABMN là hình bình hành. Chứng minh rằng tập hợp các điểm N cũng nằm trên một đường tròn xác định.
Câu 6:
Qua tâm G của tam giác đều ABC, kẻ đường thẳng a cắt BC tại M và cắt AB tại N, kẻ đường thẳng b cắt AC tại P và AB tại Q, đồng thời góc giữa a và b bằng . Chứng minh rằng tứ giác MNPQ là một hình thang cân.
Câu 7:
Cho tam giác ABC. Tìm một điểm M trên cạnh AB và một điểm N trên cạnh AC sao cho MN song song với BC và AM = CN.
về câu hỏi!