Câu hỏi:

12/07/2024 31,413 Lưu

Cho hình chóp S.ABCD có đáy là hình hình hành ABCD. Tìm giao tuyến của các cặp mặt phẳng sau đây:

a) (SAC) và (SBD);

b) (SAB) và (SCD);

c) (SAD) và (SBC).

Quảng cáo

Trả lời:

verified Giải bởi Vietjack

Giải sách bài tập Toán 11 | Giải sbt Toán 11

a)

Ta có:

Giải sách bài tập Toán 11 | Giải sbt Toán 11

Giả sử:

Giải sách bài tập Toán 11 | Giải sbt Toán 11

⇒ O ∈ (SAC) ∩ (SBD)

⇒ (SAC) ∩ (SBD) = SO

b) Ta có:

Giải sách bài tập Toán 11 | Giải sbt Toán 11

Ta lại có

Giải sách bài tập Toán 11 | Giải sbt Toán 11

c) Lập luận tương tự câu b) ta có ⇒ (SAD) ∩ (SBC) = Sy và Sy // AD // BC.

N

Nhung Nguyen

Giải hộ bài 2 và 3 với ạ

Ảnh đính kèm

CÂU HỎI HOT CÙNG CHỦ ĐỀ

Lời giải

Giải sách bài tập Toán 11 | Giải sbt Toán 11

Gọi K là trung điểm của AB.

 Vì I là trọng tâm của tam giác ABC nên I ∈ KC và vì J là trọng tâm của tam giác ABD nên J ∈ KD.

 Từ đó suy ra 

Giải sách bài tập Toán 11 | Giải sbt Toán 11

Lời giải

Giải sách bài tập Toán 11 | Giải sbt Toán 11

Trong tam giác ABC ta có:

MP // AC và MP = AC/2.

Trong tam giác ACD ta có:

QN // AC và QN = AC/2.

Từ đó suy ra {MP // QN}

⇒ Tứ giác MNPQ là hình bình hành.

Do vậy hai đường chéo MN và PQ cắt nhau tại trung điểm O của mỗi đường.

Tương tự: PR // QS và PR = QS = AB/2. Do đó tứ giác PQRS là hình bình hành.

Suy ra hai đường chéo RS và PQ cắt nhau tại trung điểm O của PQ và OR = OS

Vậy ba đoạn thẳng MN, PQ và RS cắt nhau tại trung điểm mỗi đoạn.

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP