Câu hỏi:

12/07/2024 37,147

Cho tứ diện ABCD. Gọi M, N, P, Q, R và S lần lượt trung điểm của AB, CD, BC, AD, AC và BD. Chứng minh rằng tứ giác MNPQ là hình bình hành. Từ đó suy ra ba đoạn thẳng MN, PQ và RS cắt nhau tại trung điểm mỗi đoạn.

Quảng cáo

Trả lời:

verified
Giải bởi Vietjack

Giải sách bài tập Toán 11 | Giải sbt Toán 11

Trong tam giác ABC ta có:

MP // AC và MP = AC/2.

Trong tam giác ACD ta có:

QN // AC và QN = AC/2.

Từ đó suy ra {MP // QN}

⇒ Tứ giác MNPQ là hình bình hành.

Do vậy hai đường chéo MN và PQ cắt nhau tại trung điểm O của mỗi đường.

Tương tự: PR // QS và PR = QS = AB/2. Do đó tứ giác PQRS là hình bình hành.

Suy ra hai đường chéo RS và PQ cắt nhau tại trung điểm O của PQ và OR = OS

Vậy ba đoạn thẳng MN, PQ và RS cắt nhau tại trung điểm mỗi đoạn.

CÂU HỎI HOT CÙNG CHỦ ĐỀ

Lời giải

Giải sách bài tập Toán 11 | Giải sbt Toán 11

a) Ta có: I ∈ (SAD) ⇒ I ∈ (SAD) ∩ (IBC)

Vậy

Giải sách bài tập Toán 11 | Giải sbt Toán 11

Và PQ //AD // BC (1)

Tương tự: J ∈ (SBC) ⇒ J ∈ (SBC) ∩ (JAD)

Vậy

Giải sách bài tập Toán 11 | Giải sbt Toán 11

Từ (1) và (2) suy ra PQ // MN.

b) Ta có:

Giải sách bài tập Toán 11 | Giải sbt Toán 11

Do đó: EF = (AMND) ∩ (PBCQ)

Giải sách bài tập Toán 11 | Giải sbt Toán 11

Tính

EF: CP ∩ EF = K ⇒ EF = EK + KF

Giải sách bài tập Toán 11 | Giải sbt Toán 11

Từ (∗) suy ra

Giải sách bài tập Toán 11 | Giải sbt Toán 11

Tương tự ta tính được KF = 2a/5

Vậy: Giải sách bài tập Toán 11 | Giải sbt Toán 11

Lời giải

Giải sách bài tập Toán 11 | Giải sbt Toán 11

Gọi K là trung điểm của AB.

 Vì I là trọng tâm của tam giác ABC nên I ∈ KC và vì J là trọng tâm của tam giác ABD nên J ∈ KD.

 Từ đó suy ra 

Giải sách bài tập Toán 11 | Giải sbt Toán 11

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP