Câu hỏi:

12/07/2024 3,807

Hình chóp S.ABCD có đáy là hình thoi ABCD cạnh a và có SA = SB = SC = a. Chứng minh:

a) Mặt phẳng (ABCD) vuông góc với mặt phẳng (SBD);

b) Tam giác SBD là tam giác vuông tại S.

Quảng cáo

Trả lời:

verified
Giải bởi Vietjack

a) Gọi O là tâm của hình thoi, ta có AC ⊥ BD tại O

Vì SA = SC nên SO ⊥ AC.

Do đó AC vuông góc với mặt phẳng (SBD)

Ta suy ra mặt phẳng (ABCD) vuông góc với mặt phẳng (SBD).

b) Ba tam giác SAC, BAC, DAC bằng nhau ( c.c.c) nên ta suy ra OS = OB = OD. Vậy tam giác SBD vuông tại S.

CÂU HỎI HOT CÙNG CHỦ ĐỀ

Lời giải

Giải sách bài tập Toán 11 | Giải sbt Toán 11

a) Ta có:

Giải sách bài tập Toán 11 | Giải sbt Toán 11

⇒ (SCD) ⊥ (SAD)

Gọi I là trung điểm của đoạn AB. Ta có AICD là hình vuông và IBCD là hình bình hành. Vì DI // CB và DI ⊥ CA nên AC ⊥ CB. Do đó CB ⊥ (SAC).

Vậy (SBC) ⊥ (SAC).

b) Ta có:

Giải sách bài tập Toán 11 | Giải sbt Toán 11

c) Giải sách bài tập Toán 11 | Giải sbt Toán 11

Vậy (α) là mặt phẳng chứa SD và vuông góc với mặt phẳng (SAC) chính là mặt phẳng (SDI). Do đó thiết diện của (α) với hình chóp S.ABCD là tam giác đều SDI có chiều dài mỗi cạnh bằng a√2. Gọi H là tâm hình vuông AICD ta có SH ⊥ DI và Giải sách bài tập Toán 11 | Giải sbt Toán 11 .

Tam giác SDI có diện tích:

Giải sách bài tập Toán 11 | Giải sbt Toán 11

Lời giải

Giải sách bài tập Toán 11 | Giải sbt Toán 11

Vẽ AH ⊥ (BCD) tại H, ta có CD ⊥ AH và vì CD ⊥ AB ta suy ra CD ⊥ BH. Tương tự vì BD ⊥ AC ta suy ra BD ⊥ CH

Vậy H là trực tâm của tam giác BCD tức là DH ⊥ BC

Vì AH ⊥ BC nên ta suy ra BC ⊥ AD

Cách khác: Trước hết ta hãy chứng minh hệ thức:

Giải sách bài tập Toán 11 | Giải sbt Toán 11 

với bốn điểm A, B, C, D bất kì.

Thực vậy , ta có:

Giải sách bài tập Toán 11 | Giải sbt Toán 11

Do đó nếu AB ⊥ CD nghĩa là

Giải sách bài tập Toán 11 | Giải sbt Toán 11

Từ hệ thức (4) ta suy ra 

Giải sách bài tập Toán 11 | Giải sbt Toán 11 ,

do đó AD ⊥ BC.

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP