Câu hỏi:

12/07/2024 4,205

Cho hình lập phương ABCD.A'B'C'D'.

a) Chứng minh đường thẳng BC' vuông góc với mặt phẳng (A'B'CD)

b) Xác định và tính độ dài đoạn vuông góc chung của AB' và BC'.

Sale Tết giảm 50% 2k7: Bộ 20 đề minh họa Toán, Lí, Hóa, Văn, Sử, Địa…. form chuẩn 2025 của Bộ giáo dục (chỉ từ 49k/cuốn).

20 đề Toán 20 đề Văn Các môn khác

Quảng cáo

Trả lời:

verified
Giải bởi Vietjack

Giải sách bài tập Toán 11 | Giải sbt Toán 11

a) Ta có B'C ⊥ BC' vì đây là hai đường chéo của hình vuông BB'C'C

Ngoài ra ta còn có: A'B' ⊥ (BB'C'C) ⇒ A'B' ⊥ BC'

Từ đó ta suy ra BC' ⊥ (A'B'CD) vì mặt phẳng (A'B'CD) chứa đường thẳng A'B' và B'C cùng vuông góc với BC'.

b) Mặt phẳng (AB'D') chứa đường thẳng AB' và song song với BC', ta hãy tìm hình chiếu của BC' trên mặt phẳng (AB'D'). Gọi E, F lần lượt là tâm các hình vuông ADD'A', BCC'B'. Kẻ FH ⊥ EB'với H ∈ EB', khi đó FH nằm trên mặt phẳng (A'B'CD) nên theo câu a) thì FH ⊥ (AB'D'), do đó hình chiếu BC' trên mặt phẳng (AB'D) là đường thẳng đi qua H và song song với BC'. Giả sử đường thẳng đó cắt AB' tại K thì từ K vẽ đường thẳng song song với FH cắt BC' tại L. Khi đó KL là đoạn vuông góc chung cần dựng. Tam giác B'EF vuông tại F nên từ công thức 

Giải sách bài tập Toán 11 | Giải sbt Toán 11 

ta tính được 

Giải sách bài tập Toán 11 | Giải sbt Toán 11

Nhận xét . Độ dài đoạn vuông góc chung của AB' và BC' bằng khoảng cách giữa hai mặt phẳng song song (AB'D') và (BC'D) lần lượt chứa hai đường thẳng đó.

Khoảng cách này bằng Giải sách bài tập Toán 11 | Giải sbt Toán 11

CÂU HỎI HOT CÙNG CHỦ ĐỀ

Câu 1:

Tính khoảng cách giữa hai cạnh đối trong một tứ diện đều cạnh a.

Xem đáp án » 12/07/2024 27,554

Câu 2:

Hình chóp S.ABCD có đáy là hình vuông ABCD cạnh a. Các cạnh bên SA = SB = SC = SD = a√2. Gọi I và K lần lượt là trung điểm của AD và BC.

a) Chứng minh mặt phẳng (SIK) vuông góc với mặt phẳng (SBC).

b) Tính khoảng cách giữa hai đường thẳng AD và SB.

Xem đáp án » 12/07/2024 15,188

Câu 3:

Cho hình chóp S.ABCD có đáy là nửa lục giác đều ABCD nội tiếp trong đường tròn đường kính AD = 2a và có cạnh SA vuông góc với mặt phẳng đáy (ABCD) với SA = a√6.

a) Tính khoảng cách từ A và B đến mặt phẳng (SCD).

b) Tính khoảng cách từ đường thẳng AD đến mặt phẳng (SBC).

Xem đáp án » 12/07/2024 12,812

Câu 4:

Tính khoảng cách giữa hai cạnh AB và CD của hình tứ diện ABCD biết rằng AC = BC = AD = BD = a và AB = p, CD = q.

Xem đáp án » 12/07/2024 5,992

Câu 5:

Hình chóp tam giác đều S.ABC có cạnh đáy bằng 3a, cạnh bên bằng 2a. Gọi G là trọng tâm của tam giác đáy ABC.

a) Tính khoảng cách từ S tới mặt phẳng đáy (ABC).

b) Tính khoảng cách giữa hai đường thẳng AB và SG.

Xem đáp án » 04/05/2020 5,177

Câu 6:

Cho hình lăng trụ tam giác ABC.A'B'C'có tất cả các cạnh bên và cạnh đáy đều bằng a. Các cạnh bên của lăng trụ tạo với mặt phẳng đáy góc 60ο và hình chiếu vuông góc của đỉnh A lên mặt phẳng (A'B'C') trùng với trung điểm của cạnh B'C'.

a) Tính khoảng cách giữa hai mặt phẳng đáy của lăng trụ.

b) Chứng minh rằng mặt bên BCC'B' là một hình vuông.

Xem đáp án » 12/07/2024 3,358

Bình luận


Bình luận
Vietjack official store