Câu hỏi:

12/07/2024 30,522

Cho hình chóp S.ABCD có đáy là nửa lục giác đều ABCD nội tiếp trong đường tròn đường kính AD = 2a và có cạnh SA vuông góc với mặt phẳng đáy (ABCD) với SA = a√6.

a) Tính khoảng cách từ A và B đến mặt phẳng (SCD).

b) Tính khoảng cách từ đường thẳng AD đến mặt phẳng (SBC).

Quảng cáo

Trả lời:

verified
Giải bởi Vietjack

Giải sách bài tập Toán 11 | Giải sbt Toán 11

a) Vì ABCD là nửa lục giác đều nội tiếp trong đường tròn đường kính AD = 2a nên ta có: AD //BC và AB = BC = CD = a, đồng thời AC ⊥ CD, AB ⊥ BD, AC = BD = a√3.

Như vậy Giải sách bài tập Toán 11 | Giải sbt Toán 11

Trong mặt phẳng (SAC) dựng AH ⊥ SC tại H ta có AH ⊥ CD và AH ⊥ SC nên AH ⊥ (SCD)

Vậy AH = d(A,(SCD))

Xét tam giác SAC vuông tại A có AH là đường cao, ta có:

Giải sách bài tập Toán 11 | Giải sbt Toán 11

Vậy AH2 = 2a2  AH = a2

Gọi I là trung điểm của AD ta có BI // CD nên BI song song với mặt phẳng (SCD). Từ đó suy ra d(B, (SCD)) = d(I,(SCD)).

Mặt khác AI cắt (SCD) tại D nên

Giải sách bài tập Toán 11 | Giải sbt Toán 11

Do đó: Giải sách bài tập Toán 11 | Giải sbt Toán 11

b) Vì AD // BC nên AD // (SBC), do đó d(AD, (SBC)) = d(A,(SBC))

Dựng AD ⊥ BC tại E ⇒ BC ⊥ (SAE)

Dựng AD ⊥ SE tại F ta có:

Giải sách bài tập Toán 11 | Giải sbt Toán 11

Vậy AF = d(A,(SBC)) = d(AD, (SBC))

Xét tam giác vuông AEB ta có:

Giải sách bài tập Toán 11 | Giải sbt Toán 11

Xét tam giác SAE vuông tại A ta có:

Giải sách bài tập Toán 11 | Giải sbt Toán 11

Bình luận


Bình luận

CÂU HỎI HOT CÙNG CHỦ ĐỀ

Câu 1:

Tính khoảng cách giữa hai cạnh đối trong một tứ diện đều cạnh a.

Xem đáp án » 12/07/2024 31,619

Câu 2:

Hình chóp S.ABCD có đáy là hình vuông ABCD cạnh a. Các cạnh bên SA = SB = SC = SD = a√2. Gọi I và K lần lượt là trung điểm của AD và BC.

a) Chứng minh mặt phẳng (SIK) vuông góc với mặt phẳng (SBC).

b) Tính khoảng cách giữa hai đường thẳng AD và SB.

Xem đáp án » 12/07/2024 22,610

Câu 3:

Hình chóp tam giác đều S.ABC có cạnh đáy bằng 3a, cạnh bên bằng 2a. Gọi G là trọng tâm của tam giác đáy ABC.

a) Tính khoảng cách từ S tới mặt phẳng đáy (ABC).

b) Tính khoảng cách giữa hai đường thẳng AB và SG.

Xem đáp án » 04/05/2020 6,525

Câu 4:

Tính khoảng cách giữa hai cạnh AB và CD của hình tứ diện ABCD biết rằng AC = BC = AD = BD = a và AB = p, CD = q.

Xem đáp án » 12/07/2024 6,473

Câu 5:

Cho hình lăng trụ tam giác ABC.A'B'C'có tất cả các cạnh bên và cạnh đáy đều bằng a. Các cạnh bên của lăng trụ tạo với mặt phẳng đáy góc 60ο và hình chiếu vuông góc của đỉnh A lên mặt phẳng (A'B'C') trùng với trung điểm của cạnh B'C'.

a) Tính khoảng cách giữa hai mặt phẳng đáy của lăng trụ.

b) Chứng minh rằng mặt bên BCC'B' là một hình vuông.

Xem đáp án » 12/07/2024 5,648

Câu 6:

Cho hình lập phương ABCD.A'B'C'D'.

a) Chứng minh đường thẳng BC' vuông góc với mặt phẳng (A'B'CD)

b) Xác định và tính độ dài đoạn vuông góc chung của AB' và BC'.

Xem đáp án » 12/07/2024 5,177
Vietjack official store
Đăng ký gói thi VIP

VIP +1 - Luyện thi tất cả các đề có trên Website trong 1 tháng

  • Được thi tất cả các đề của các lớp có trên Khoahoc.vietjack.com
  • Ngân hàng câu hỏi trắc nghiệm theo các mức độ Nhận biết, Thông hiểu, Vận dụng, Vận dụng cao.
  • Luyện chuyên sâu, rèn tốc độ với trọn bộ đề thi thử, đề minh họa, chính thức các năm.
  • Hỏi bài tập với đội ngũ chuyên môn cao của chúng tôi.

Đặt mua

VIP +3 - Luyện thi tất cả các đề có trên Website trong 3 tháng

  • Được thi tất cả các đề của các lớp có trên Khoahoc.vietjack.com
  • Ngân hàng câu hỏi trắc nghiệm theo các mức độ Nhận biết, Thông hiểu, Vận dụng, Vận dụng cao.
  • Luyện chuyên sâu, rèn tốc độ với trọn bộ đề thi thử, đề minh họa, chính thức các năm.
  • Hỏi bài tập với đội ngũ chuyên môn cao của chúng tôi.

Đặt mua

VIP +6 - Luyện thi tất cả các đề có trên Website trong 6 tháng

  • Được thi tất cả các đề của các lớp có trên Khoahoc.vietjack.com
  • Ngân hàng câu hỏi trắc nghiệm theo các mức độ Nhận biết, Thông hiểu, Vận dụng, Vận dụng cao.
  • Luyện chuyên sâu, rèn tốc độ với trọn bộ đề thi thử, đề minh họa, chính thức các năm.
  • Hỏi bài tập với đội ngũ chuyên môn cao của chúng tôi.

Đặt mua

VIP +12 - Luyện thi tất cả các đề có trên Website trong 12 tháng

  • Siêu tiết kiệm - Được thi tất cả các đề của các lớp có trên Khoahoc.vietjack.com
  • Ngân hàng câu hỏi trắc nghiệm theo các mức độ Nhận biết, Thông hiểu, Vận dụng, Vận dụng cao.
  • Luyện chuyên sâu, rèn tốc độ với trọn bộ đề thi thử, đề minh họa, chính thức các năm.
  • Hỏi bài tập với đội ngũ chuyên môn cao của chúng tôi.

Đặt mua