Câu hỏi:

13/07/2024 807 Lưu

Dựng cung chứa góc 42° trên đoạn thẳng AB = 3cm

Quảng cáo

Trả lời:

verified
Giải bởi Vietjack

Giải sách bài tập Toán 9 | Giải bài tập Sách bài tập Toán 9

- Dựng đoạn thẳng AB = 3cm

- Vẽ tia Ax sao cho góc (BAx) = 42°

- Dựng đường thẳng d là trung trực của đoạn AB

- Dựng tia Ay sao cho Ay ⊥ Ax (tia Ay cắt đường trung trực d của AB tại O)

- Dựng cung tròn AmB tâm O bán kính OA

- Dựng điểm O’ đối xứng với O qua AB

- Dựng cung tròn (Am'B) tâm O’ bán kính O’A

Ta được hai cung chứa góc 42° trên đoạn thẳng AB = 3cm đối xứng nhau qua AB

CÂU HỎI HOT CÙNG CHỦ ĐỀ

Lời giải

Giải sách bài tập Toán 9 | Giải bài tập Sách bài tập Toán 9

Trong ABC ta lấy điểm M. Nối MA, MB, MC.

Ta cần làm xuất hiện tổng MA + MB + MC sau đó tìm điều kiện để tổng đó nhỏ nhất.

Lấy MC làm cạnh dựng trên nửa mặt phẳng bờ BC chứa điểm A tam giác đều MCN. Suy ra: CM = MN.

Lấy AC làm cạnh dựng trên nửa mặt phẳng bờ AC không chứa điểm B tam giác đều APC. Khi đó, CA = CP

Giải sách bài tập Toán 9 | Giải bài tập Sách bài tập Toán 9

Xét AMC và PNC:

CM = CN (vì ΔMCN đều)

CA = CP (vì ΔAPC đều)

Giải sách bài tập Toán 9 | Giải bài tập Sách bài tập Toán 9

Suy ra: AMC = PNC (c.g.c)

⇒ PN = AM

MA + MB + MC = NP + MB + MN

Ta có ABC cho trước nên điểm P cố định nên BM + MN + NP ngắn nhất khi 4 điểm B, M, N, P thẳng hàng.

Giải sách bài tập Toán 9 | Giải bài tập Sách bài tập Toán 9

Lời giải

Giải sách bài tập Toán 9 | Giải bài tập Sách bài tập Toán 9

Phân tích: Vì ABCD là hình vuông nên:

Giải sách bài tập Toán 9 | Giải bài tập Sách bài tập Toán 9

Ta có, ba điểm A, M, N cố định nên bài toán quy về việc dựng đỉnh C. Đỉnh C là giao điểm của :

- Cung chứa góc 90° dựng trên đoạn thẳng MN

- Cung chứa góc 45° dựng trên đoạn thẳng AM

Cách dựng:

- Dựng cung chứa góc 90° trên đoạn MN

- Dựng cung chứa góc 45° trên đoạn AM

Hai cung cắt nhau tại C

- Nối CM ,CN

- kẻ AB ⊥ CM tại B , AD ⊥ CN tại D

Tứ giác ABCD là hình vuông cần dựng

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP