Câu hỏi:
13/07/2024 5,292Cho đoạn thẳng AC và BD cắt nhau tại E. Biết AE.EC=BE.ED .Chứng minh bốn điểm A,B,C,D cùng nằm trên một đường tròn
Sách mới 2k7: Tổng ôn Toán, Lí, Hóa, Văn, Sử, Địa…. kỳ thi tốt nghiệp THPT Quốc gia 2025, đánh giá năng lực (chỉ từ 110k).
Quảng cáo
Trả lời:
Ta có: AE.EC=BE.ED (gt)
Suy ra : AE/ED = BE/EC
Xét ΔABE và ΔDCE ta có:
AE/ED = BE/EC
Vì A và D nhìn đoạn BC cố định dưới một góc bằng nhau nên A và D nằm trên một cung chứa góc vẽ trên BC hay bốn điểm A ,B ,C ,D cùng nẳm trên một đường tròn
CÂU HỎI HOT CÙNG CHỦ ĐỀ
Câu 1:
Cho tam giác ABC.Các đường phân giác trong của góc B và góc C cắt nhau tại S,các đường phân giác ngoài của góc B và góc C cắt nhau tại E.Chứng minh BSCE là một tứ giác nội tiếp
Câu 2:
Trên đường tâm O có một cung AB và S là điểm chính giữa của cung đó.Trên dây AB lấy hai điểm E và H.Các đường thẳng SH và SE cắt đường tròn theo thứ tự tại C và D.Chứng minh EHCD là một tứ giác nội tiếp
Câu 3:
Cho tam giác ABC có đáy BC và góc A = .Trên nửa mặt phẳng bờ AB không chứa điểm C lấy điểm D sao cho DA = DB và góc (DAB) = .Gọi E là giao điểm của AB và CD. Chứng minh ACBD là một tứ giác nội tiếp
Câu 4:
Cho đường tròn tâm O bán kính R và hai dây AB, CD bất kì. Gọi M là điểm chính giữa của cung nhỏ AB. Gọi E và F tương ứng là giao điểm của MC, MD với dây AB. Gọi I và J tương ứng là giao điểm của DE, CF với đường tròn (O). Chứng minh IJ song song với AB.
Câu 5:
Cho ba đường tròn cùng đi qua một điểm P. Gọi các giao điểm khác P của hai trong ba đường tròn đó là A,B,C.Từ một điểm D (khác điểm P) trên đường tròn (PBC) kẻ các tia DB,DC cắt các đường tròn (PAB) ,(PAC) lần lượt tại M,N.Chứng minh ba điểm M,A,N thẳng hàng
Câu 6:
Cho tam giác ABC có ba góc nhọn. Vẽ các đường cao AI, BK, CL của tam giác ấy. Gọi H là giao điểm của các đường cao vừa vẽ. Chỉ ra các tứ giác nội tiếp có đỉnh lấy trong số các điểm A, B, C, H, I, K, L
về câu hỏi!