Câu hỏi:
24/06/2020 1,365Cho tứ diện SABC có cạnh SA vuông góc với mặt phẳng (ABC) và có SA = a, AB = b , AC = c . Xác định tâm và bán kính hình cầu ngoại tiếp tứ diện trong các trường hợp sau: BAC = 60 và b = c
Câu hỏi trong đề: Giải SBT Toán 12 Bài 2: Mặt cầu !!
Quảng cáo
Trả lời:
BAC = 60 và b = c, khi đó ABC là tam giác đều cạnh b. Gọi I là trọng tâm của tam giác đều nên I đồng thời cũng là tâm của đường tròn ngoại tiếp tam giác đều ABC. Dựng d là đường thẳng vuông góc với mặt phẳng (ABC) tại I. Mặt phẳng trung trực của đoạn SA cắt d tại O.
Ta có OS = OA = OB = OC và
Do đó ta có hình cầu tâm O ngoại tiếp tứ diện và có
Vậy
Hot: 500+ Đề thi thử tốt nghiệp THPT các môn, ĐGNL các trường ĐH... file word có đáp án (2025). Tải ngay
- 20 đề thi tốt nghiệp môn Toán (có đáp án chi tiết) ( 38.500₫ )
- 500 Bài tập tổng ôn môn Toán (Form 2025) ( 38.500₫ )
- Sổ tay lớp 12 các môn Toán, Lí, Hóa, Văn, Sử, Địa, KTPL (chương trình mới) ( 36.000₫ )
- Bộ đề thi tốt nghiệp 2025 các môn Toán, Lí, Hóa, Văn, Anh, Sinh, Sử, Địa, KTPL (có đáp án chi tiết) ( 36.000₫ )
CÂU HỎI HOT CÙNG CHỦ ĐỀ
Lời giải
Giả sử ta có mặt cầu tâm I đi qua các đỉnh S, A, B, C của hình chóp. Mặt phẳng (ABC) cắt mặt cầu ngoại tiếp hình chóp theo giao tuyến là đường tròn tâm O ngoại tiếp tam giác ABC. Vì SA = SB = SC nên ta có SO (ABC) và OS là trục của đường tròn tâm O. Do đó SO AO. Trong tam giác SAO, đường trung trực của đoạn SA cắt SO tại I và ta được hai tam giác vuông đồng dạng là SIM và SAO, với M là trung điểm của cạnh SA.
Ta có
với SI = IA = IB = IC = r
Vậy
Do đó diện tích của mặt cầu ngoại tiếp hình chóp S.ABC đã cho là :
Lời giải
Gọi H trọng tâm của tam giác đều BCD.
Ta có AH (BCD). Do đó
Vậy
Mặt khác
hay OC = OB = OD = (a)/2
Vì BD = BC = CD = a nên các tam giác DOB, BOC, COD là những tam giác vuông cân tại O. Do đó hình chóp ODBC là hình chóp có đáy là tam giác đều nên tâm của mặt cầu ngoại tiếp phải nằm trên OH, ngoài ra tâm của mặt cầu ngoại tiếp này phải nằm trên trục của tam giác vuông DOB. Từ trung điểm C’ của cạnh BD ta vẽ đường thẳng song song với OC cắt đường thẳng OH tại I. Ta có I là tâm mặt cầu ngoại tiếp tứ diện OBCD. Mặt cầu này có bán kính là IC và
Chú ý rằng IH = OH/2 (vì HC′ = HC/2)
Do đó:
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.