Câu hỏi:

11/07/2024 5,229

Cho đường tròn (O;R) và điểm M thuộc đường tròn (O). Đường trung trực của đoạn thẳng OM cắt đường tròn (O) tại A và B và cắt OM tại H.

d) Đường thẳng vuông góc với OA tại O cắt BC tại N. Chứng minh MN là tiếp tuyến của đường tròn (O).

Quảng cáo

Trả lời:

verified
Giải bởi Vietjack

Đề kiểm tra Toán 9 | Đề thi Toán 9

d) Ta có: CA ⊥ OA (CA là tiếp tuyến của (O)

và ON ⊥ OA (gt)

⇒ CA // ON ⇒ ∠(CON) = ∠(ACO) (sole trong)

Mà ∠(ACO) = ∠(BCO) (ΔOAC = ΔOBC)

⇒ ∠(CON) = ∠(BCO) ⇒ ΔNCO cân tại N

Xét tam giác CAO vuông tại A có ∠(AOC) = 60o( ΔAMO đều) nên:

Đề kiểm tra Toán 9 | Đề thi Toán 9

⇒ M là trung điểm của OC

ΔNCO cân tại N có NM là trung tuyến ⇒ NM cũng là đường cao

Hay NM là tiếp tuyến của (O)

CÂU HỎI HOT CÙNG CHỦ ĐỀ

Lời giải

Đề kiểm tra Toán 9 | Đề thi Toán 9

a) Chứng minh H là trung điểm của AB

Ta có OM vuông góc AB tại H (gt)

Vậy H là trung điểm của AB (đường kính vuông góc với một dây cung)

Chứng minh tam giác OAM đều:

Ta có: AM = AO (A là trung trực của OM)

và OA = OM = R

Suy ra AM = AO = OM

Vậy ΔOAM đều.

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP