Câu hỏi:

11/07/2024 3,858 Lưu

Cho tam giác ABC có 3 góc nhọn nội tiếp đường tròn (O). Các đường cao AD, BE, CF cắt nhau tại H và cắt đường tròn (O) lần lượt tại M, N, P. Chứng minh rằng:

b) Bốn điểm B, C, E, F cùng nằm trên một đường tròn

Quảng cáo

Trả lời:

verified
Giải bởi Vietjack

Đề kiểm tra Toán 9 | Đề thi Toán 9

b) Xét tứ giác BFEC có:

∠(BFC) = 900 (Do CF là đường cao)

∠(BEC ) = 900 (Do BE là đường cao)

⇒ E và F cùng nhìn BC dưới một góc bằng nhau

⇒ Tứ giác BFEC nội tiếp được đường tròn

⇒ Bốn điểm B, E, F, C cùng nằm trên đường tròn

CÂU HỎI HOT CÙNG CHỦ ĐỀ

Câu 1

Lời giải

Đáp án là B

S = πR2 = 64π ⇒ R = 8

Chu vi hình tròn là: C = 2πR = 2π.8 = 16π cm

Lời giải

Đề kiểm tra Toán 9 | Đề thi Toán 9

a) Xét tứ giác CEHD có:

∠(CED) = 900 (do BE là đường cao)

∠(HDC) = 900 (do AD là đường cao)

⇒ ∠(CED) + ∠(HDC) = 1800

Mà ∠(CED) và ∠(HDC) là 2 góc đối của tứ giác CEHD nên CEHD là tứ giác nội tiếp

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP