Câu hỏi:

12/07/2024 8,356

Cho tam giác nhọn ABC, các đường cao AD, BE, CF cắt nhau tại H.

a) Chứng minh ΔAEB và ΔAFC đồng dạng. Từ đó suy ra: AF.AB = AE.AC

b) Chứng minh AEF = ABC

c) Cho AE = 3cm, AB = 6cm. Chứng minh rằng SABC = 4SAEF

d) Chứng minh  AFFB.BDDC.CEEA=1

Quảng cáo

Trả lời:

verified
Giải bởi Vietjack

a) Xét ΔAEB và ΔAFC có:

∠AEB = ∠AFC = 90o (gt)

∠A chung

Vậy ΔAEB ∼ ΔAFC (g.g)

b) Xét ΔAEF và ΔABC có

∠A chung

AF.AB = AE.AC (Cmt)

⇒ ΔAEF ∼ ΔABC (c.g.c)

⇒ ∠AEF = ∠ABC

c) ΔAEF ∼ ΔABC (cmt)

CÂU HỎI HOT CÙNG CHỦ ĐỀ

Lời giải

Ta có: ab<a+cb+c

⇔ a(b + c) < (a + c)b

(vì a > 0, b > 0 và c > 0 ⇔ b + c > 0 và a + c > 0)

⇔ ab + ac < ab + bc

⇔ ac < bc ⇔ a < b (luôn đúng, theo gt)

Câu 3

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Câu 6

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP