Câu hỏi:

07/07/2020 2,689

Cho phương trình (ẩn x) : x2 – 2mx – 4m – 4 = 0(1)

b) Tìm m để phương trình (1) có 2 nghiệm x1,x2 thỏa mãn x12+x22-x1x2=13 = 13

Sách mới 2k7: Tổng ôn Toán, Lí, Hóa, Văn, Sử, Địa…. kỳ thi tốt nghiệp THPT Quốc gia 2025, đánh giá năng lực (chỉ từ 110k).

Tổng ôn toán Tổng ôn lý Các môn khác

Quảng cáo

Trả lời:

verified
Giải bởi Vietjack

b) Gọi x1 ; x2 lần lượt là 2 nghiệm của phương trình đã cho

Theo hệ thức Vi-et ta có:

Đề kiểm tra Toán 9 | Đề thi Toán 9

x12+x22 -x1x2 = x1+x22- 3x1 x2 = 4m2 + 3(4m + 4)

Theo bài ra: x12+x22 - x1 x2=13

⇒ 4m2 + 3(4m + 4) = 13 ⇔ 4m2 + 12m - 1 = 0

m = 122 -4.4.(-1) = 160 ⇒ m=410

Phương trình có 2 nghiệm phân biệt

Đề kiểm tra Toán 9 | Đề thi Toán 9

Vậy với Đề kiểm tra Toán 9 | Đề thi Toán 9 thì phương trình có 2 nghiệm x1x2 thỏa mãn điều kiện x12+x22 - x1 x2 = 13

CÂU HỎI HOT CÙNG CHỦ ĐỀ

Câu 1:

Cho đường tròn (O;R) và một điểm A ngoài đường tròn (O) sao cho OA = 3R. Từ A vẽ hai tiếp tuyến AB, AC với (O) (B, C là các tiếp điểm).

b) Từ B vẽ đường thẳng song song với AC cắt đường tròn tâm (O) tại D (D khác B), AD cắt đường tròn (O) tại E (E khác D). Tính tích AD.AE theo R.

Xem đáp án » 13/07/2024 4,124

Câu 2:

Giải các phương trình và hệ phương trình sau:

c) 5x-2y=7x-5y=25

Xem đáp án » 13/07/2024 3,095

Câu 3:

Cho đường tròn (O;R) và một điểm A ngoài đường tròn (O) sao cho OA = 3R. Từ A vẽ hai tiếp tuyến AB, AC với (O) (B, C là các tiếp điểm).

a) Chứng minh tứ giác OBAC nội tiếp và OA vuông góc với BC

Xem đáp án » 13/07/2024 3,017

Câu 4:

Cho đường tròn (O;R) và một điểm A ngoài đường tròn (O) sao cho OA = 3R. Từ A vẽ hai tiếp tuyến AB, AC với (O) (B, C là các tiếp điểm).

d) Tính theo R diện tích tam giác BDC.

Xem đáp án » 11/07/2024 2,567

Câu 5:

Tìm kích thước của hình chữ nhật, biết chiều dài hơn chiều rộng 3m. Nếu tăng thêm mỗi chiều thêm 2 mét thì diện tích của hình chữ nhật tăng thêm 70m2.

Xem đáp án » 13/07/2024 2,453

Câu 6:

a) Vẽ đồ thị (P) hàm số y= x2/4

Xem đáp án » 13/07/2024 1,887

Bình luận


Bình luận
Đăng ký gói thi VIP

VIP 1 - Luyện thi tất cả các đề có trên Website trong 1 tháng

  • Được thi tất cả các đề của các lớp có trên Khoahoc.vietjack.com
  • Ngân hàng câu hỏi trắc nghiệm theo các mức độ Nhận biết, Thông hiểu, Vận dụng, Vận dụng cao.
  • Luyện chuyên sâu, rèn tốc độ với trọn bộ đề thi thử, đề minh họa, chính thức các năm.
  • Hỏi bài tập với đội ngũ chuyên môn cao của chúng tôi.

Đặt mua

VIP 2 - Luyện thi tất cả các đề có trên Website trong 3 tháng

  • Được thi tất cả các đề của các lớp có trên Khoahoc.vietjack.com
  • Ngân hàng câu hỏi trắc nghiệm theo các mức độ Nhận biết, Thông hiểu, Vận dụng, Vận dụng cao.
  • Luyện chuyên sâu, rèn tốc độ với trọn bộ đề thi thử, đề minh họa, chính thức các năm.
  • Hỏi bài tập với đội ngũ chuyên môn cao của chúng tôi.

Đặt mua

VIP 3 - Luyện thi tất cả các đề có trên Website trong 6 tháng

  • Được thi tất cả các đề của các lớp có trên Khoahoc.vietjack.com
  • Ngân hàng câu hỏi trắc nghiệm theo các mức độ Nhận biết, Thông hiểu, Vận dụng, Vận dụng cao.
  • Luyện chuyên sâu, rèn tốc độ với trọn bộ đề thi thử, đề minh họa, chính thức các năm.
  • Hỏi bài tập với đội ngũ chuyên môn cao của chúng tôi.

Đặt mua

VIP 4 - Luyện thi tất cả các đề có trên Website trong 12 tháng

  • Siêu tiết kiệm - Được thi tất cả các đề của các lớp có trên Khoahoc.vietjack.com
  • Ngân hàng câu hỏi trắc nghiệm theo các mức độ Nhận biết, Thông hiểu, Vận dụng, Vận dụng cao.
  • Luyện chuyên sâu, rèn tốc độ với trọn bộ đề thi thử, đề minh họa, chính thức các năm.
  • Hỏi bài tập với đội ngũ chuyên môn cao của chúng tôi.

Đặt mua

Vietjack official store