Câu hỏi:

07/09/2020 9,620 Lưu

Cho hình chóp S. ABCD có đáy là một tứ giác lồi. Gọi M và N lần lượt là trọng tâm của tam giác SAB và SAD. Khẳng định nào sau đây là đúng?

Quảng cáo

Trả lời:

verified
Giải bởi Vietjack

Đáp án A

+) M là trọng tâm của tam giác SAB nên giao điểm P của SM và AB là trung điểm của AB.

Suy ra SM = 2/3 SPSMSP=23

N là trọng tâm của tam giác SAD nên giao điểm Q của SN và AD là trung điểm của AD

Suy ra SN = 2/3 SQSNSQ=23

Xét tam giác SPQ có  SMSP=SNSQ=23 nên MN // PQ (1) (định lý Ta-lét)

Do đó đáp án A đúng.

+) Xét tam giác IBD có

IMIB=13(tam giác SAB có I là trung điểm của SA và M là trọng tâm)

INID=13 (tam giác SAD có I là trung điểm của SA và N là trọng tâm)

Do đó IMIB=INID=13  nên MN // BD

Suy ra đáp án B, C, D sai.

Chọn đáp án A

CÂU HỎI HOT CÙNG CHỦ ĐỀ

Câu 1

Lời giải

* Xét hình thang ABCD có I và J lần lượt là trung điểm của AD; BC nên:

    IJ là đường trung bình hình thang ABCD. Suy ra: IJ // AB.

* Hai mặt phẳng (GIJ) và (SAB) : lần lượt chứa hai đường thẳng song song ( là IJ và AB) và có điểm G chung 

nên giao tuyến của chúng là đường thẳng đi qua G và song song với AB.

Đường thẳng này cắt SA tại M và cắt SB tại N.

Đáp án C

Câu 2

Lời giải

Đáp án B

Câu 3

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Câu 6

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Câu 7

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP