Cho hình bình hành ABCD. Qua các đỉnh A, B, C, D ta dựng các nửa đường thẳng song song với nhau và nằm về một phía đối với mặt phẳng (ABCD). Một mặt phẳng (P) cắt bốn đường thẳng nói trên tại A’, B’, C’, D’. Hỏi A’B’C’D’ là hình gì?
Câu hỏi trong đề: 15 câu Trắc nghiệm Hai mặt phẳng song song có đáp án !!
Quảng cáo
Trả lời:
Định lí về giao tuyến của 1 mặt phẳng cắt 2 mặt phẳng song song:
Nếu 1 mặt phẳng cắt 2 mặt phẳng song song thì 2 giao tuyến đó song song với nhau.
+ Do đó, 2 mp (ABB'A')// mp (CDD'C'), nên mp (A'B'C'D') cắt hai mp trên theo 2 giao tuyến là A'B'; C'D' thì A'B'// C'D' (1)
+ Tương tự, hai mp (AA'D'D)// (BB'C'C) nên mp ( A'B'C'D') cắt hai mp trên theo 2 giao tuyến là A'D' và B'C' thì
A'D'// B'C' (2)
Từ (1) và (2) suy ra: tứ giác A’B’C’D’ là hình bình hành.
Đáp án D.
Hot: Học hè online Toán, Văn, Anh...lớp 1-12 tại Vietjack với hơn 1 triệu bài tập có đáp án. Học ngay
- Trọng tâm Sử, Địa, GD KTPL 11 cho cả 3 bộ Kết nối, Chân trời, Cánh diều VietJack - Sách 2025 ( 38.000₫ )
- Sách - Sổ tay kiến thức trọng tâm Vật lí 11 VietJack - Sách 2025 theo chương trình mới cho 2k8 ( 45.000₫ )
- Sách lớp 11 - Trọng tâm Toán, Lý, Hóa, Sử, Địa lớp 11 3 bộ sách KNTT, CTST, CD VietJack ( 52.000₫ )
- Sách lớp 10 - Combo Trọng tâm Toán, Văn, Anh và Lí, Hóa, Sinh cho cả 3 bộ KNTT, CD, CTST VietJack ( 75.000₫ )
CÂU HỎI HOT CÙNG CHỦ ĐỀ
Lời giải
Gọi M, N, E lần lượt là trung điểm của BC, CC′, B′C′.
Theo tính chất trọng tâm tam giác ta có: nên IJ // MN (1).
Trong mặt phẳng (AA′ME) ta có
⇒ IK // ME (2).
Từ (1) và (2) ta có:
IJ; IK (IJK);
Nên IJ // (BB′C′), IK // (BB′C′)
Suy ra (IJK) // (BB′C′)
Đáp án cần chọn là: C
Lời giải
Đáp án C
+) Ta có: BC // AD; BE // AF (ABCD và ABEF là hình bình hành)
Suy ra BC // (ADF); BE // (ADF)
Mà BC BE = B
Do đó (ADF) // (BEC).
+) O và O’ lần lượt là tâm của hình bình hành ABCD và ABEF nên O và O’ là trung điểm của BF và BD
Xét tam giác ABF có MO’ là đường trung bình nên MO’ // AF
MO’ // (ADF) (1)
Tương tự MO là đường trung bình của tam giác ABD nên MO // AD
MO // (ADF) (2)
Từ (1) và (2) suy ra (MOO’) // (ADF)
+) Chứng minh tương tự ta cũng có (MOO’) // (BCE).
+) Hai mặt phẳng (AEC) và (BDF) có:
AC DB = O ; AE BF = O’
Suy ra (AEC) (BDF) = OO’.
Vậy khẳng định (I); (II); (III) đúng.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.