Câu hỏi:

01/02/2021 7,254 Lưu

Cho hình bình hành ABCD. Qua các đỉnh A, B, C, D ta dựng các nửa đường thẳng song song với nhau và nằm về một phía đối với mặt phẳng (ABCD). Một mặt phẳng (P) cắt bốn đường thẳng nói trên tại A’, B’, C’, D’. Hỏi A’B’C’D’ là hình gì?

Quảng cáo

Trả lời:

verified
Giải bởi Vietjack

Định lí về giao tuyến của 1 mặt phẳng cắt 2 mặt phẳng song song:

   Nếu 1 mặt phẳng cắt 2 mặt phẳng song song thì 2 giao tuyến đó song song với nhau.

+ Do đó, 2 mp (ABB'A')// mp (CDD'C'), nên mp (A'B'C'D') cắt hai mp trên theo 2 giao tuyến là A'B';  C'D' thì A'B'// C'D'  (1)

+ Tương tự, hai mp (AA'D'D)// (BB'C'C) nên mp ( A'B'C'D') cắt hai mp trên theo 2 giao tuyến là A'D' và B'C' thì

A'D'// B'C'  (2)

Từ (1) và  (2) suy ra:  tứ giác A’B’C’D’ là hình bình hành.

Đáp án D.

CÂU HỎI HOT CÙNG CHỦ ĐỀ

Lời giải

Gọi MNE lần lượt là trung điểm của BCCC′B′C′.

 Theo tính chất trọng tâm tam giác ta có:  AIAM= AJAN= 23 nên IJ // MN  (1).

Trong mặt phẳng (AA′ME) ta có

IK // ME   (2).

Từ (1) và (2) ta có:  

IJ; IK (IJK); MN;  ME(BB'C')

Nên IJ // (BB′C′), IK // (BB′C′)

Suy ra (IJK) // (BB′C′)

Đáp án cần chọn là: C

Lời giải

Đáp án C

+) Ta có: BC // AD; BE // AF (ABCD và ABEF là hình bình hành)

Suy ra BC // (ADF); BE // (ADF)

Mà BC  BE = B

Do đó (ADF) // (BEC).

+) O và O’ lần lượt là tâm của hình bình hành ABCD và ABEF nên O và O’ là trung điểm của BF và BD

Xét tam giác ABF có MO’ là đường trung bình nên MO’ // AF

 MO’ // (ADF)  (1)

Tương tự MO là đường trung bình của tam giác ABD nên MO // AD

 MO // (ADF)  (2)

Từ (1) và (2) suy ra (MOO’) // (ADF)

+) Chứng minh tương tự ta cũng có (MOO’) // (BCE).

+) Hai mặt phẳng (AEC) và (BDF) có:

AC  DB = O ; AE  BF = O’

Suy ra (AEC)  (BDF) = OO’.

Vậy khẳng định (I); (II); (III) đúng.

Câu 3

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Câu 5

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Câu 7

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP