Câu hỏi:
20/08/2020 685Vẽ, cắt và gấp miếng bìa như hình đã chỉ ra ở hình 125 để được hình chóp tứ giác đều.
a) Trong hình 125a, có bao nhiêu tam giác cân bằng nhau?
b) Sử dụng định lí Pitago để tính chiều cao ứng với đáy của mỗi tam giác.
c) Diện tích xung quanh và diện tích toàn phần của hình chóp đều này là bao nhiêu?
Quảng cáo
Trả lời:
a) Trong hình 125a có 4 tam giác cân bằng nhau.
b) Gọi H là trung điểm BC. Tam giác ABC có AH là đường trung tuyến nên đồng thời là đường cao.
Chiều cao ứng với đáy của mỗi tam giác:
c) Chu vi đáy của hình chóp là 4.5 = 20 (cm).
Diện tích xung quanh hình chóp:
Diện tích đáy: Sd = 52 = 25 (cm2)
Diện tích toàn phần của hình chóp:
Stp = Sd + Sxq = 121,8 (cm2)
Hot: Học hè online Toán, Văn, Anh...lớp 1-12 tại Vietjack với hơn 1 triệu bài tập có đáp án. Học ngay
CÂU HỎI HOT CÙNG CHỦ ĐỀ
Lời giải
Ta có ABCD là hình vuông, khi đó nửa chu vi bằng:
+ BD = AC = √ (82 + 82) = 8√ 2 ( cm ) ⇒ AO = BO = CO = DO = 4√ 2 ( cm )
Do đó:
+ Diện tích xung quanh của hình chóp đều là Sxq = p.d = p.OB = 16.4√ 2 = 64√ 2 ( cm2 ).
+ Diện tích toàn phần của hình chóp đều là
Stp = Sxq + SABCD = 64√ 2 + 82 = 64 + 64√ 2 ( cm2 )
+ Thể tích của hình chóp đều là V = 1/3S.h = 1/3.SABCD.SO = 1/3.82.10 = 640/3( cm3 )
Lời giải
Gọi H là trung điểm của CD
Vì ΔSCD cân tại S, có SH là đường trung tuyến nên đồng thời là đường cao
⇒ SH ⊥ CD.
Ta có:
Chu vi đáy là: 4. 30 = 120 (cm)
Diện tích xung quanh của hình chóp:
Diện tích đáy: Sd = 302 = 900 (cm2)
Diện tích toàn phần của hình chóp:
Stp = Sxq + Sd = 1200 + 900 = 2100 (cm2)
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.