Câu hỏi:

13/07/2024 1,250

Tìm số hạng đầu tiên của các dãy số sau : . . ., 17, 19, 21

Biết rằng mỗi dãy có 10 số hạng.

Quảng cáo

Trả lời:

verified
Giải bởi Vietjack

Ta nhận xét :

          Số hạng thứ mười là

                   21 = 2 x 10 + 1

          Số hạng thứ chín là :

                   19 = 2 x 9 + 1

          Số hạng thứ tám là :

                   17 = 2 x 8 + 1

          . . .

          Từ đó suy ra quy luật của dãy số trên là : Mỗi số hạng của dãy bằng 2 x thứ tự của số hạng trong dãy rồi cộng với 1.

          Vậy số hạng đầu tiên của dãy là: 2 x 1 + 1 = 3

Bình luận


Bình luận

CÂU HỎI HOT CÙNG CHỦ ĐỀ

Lời giải

a, Ta nhận xét :

                   4 = 1 + 3

                   7 = 3 + 4

                   11 = 4 + 7

                   18 = 7 + 11

                   ...

          Từ đó rút ra quy luật của dãy số là : Mỗi số hạng (Kể từ số hạng thứ ba) bằng tổng của hai số hạng đứng trước nó. Viết tiếp ba số hạng, ta được dãy số sau :

          1, 3, 4, 7, 11, 18, 29, 47, 76,...

b, Tương tự bài a, ta tìm ra quy luật của dãy số là : Mỗi số hạng (kể từ số hạng thứ tư) bằng tổng của 3 số hạng đứng trước nó.

          Viét tiếp ba số hạng, ta được dãy số sau.

          0, 2, 4, 6, 12, 22, 40, 74, 136, ...

c, ta nhận xét :

          Số hạng thứ hai là :

                             3 = 0 + 1 + 2

          Số hạng thứ ba là :

                             7 = 3 + 1 + 3

          Số hạng thứ tư là :

                             12 = 7 + 1 + 4

          Từ đó rút ra quy luật của dãy là : Mỗi số hạng (kể từ số hạng thứ hai) bằng tổng của số hạng đứng trước nó cộng với 1 và cộng với số thứ tự của số hạng ấy .

          Viết tiếp ba số hạng ta được dãy số sau.

          0, 3, 7, 12, 18, 25, 33, ...

d, Ta nhận xét :

          Số hạng thứ hai là

                             2 = 1 x 2

          Số hạng thứ ba là

                             6 = 2 x 3

          số hạng thứ tư là

                             24 = 6 x 4

          . . .

          Từ đó rút ra quy luật của dãy số là : Mỗi số hạng (kể từ số hạng thứ hai) bằng tích của số hạng đứng liền trước nó nhân với số thứ tự của số hạng ấy.

          Viết tiếp ba số hạng ta được dãy số sau : 1, 2, 6, 24, 120, 720, 5040, ...

Lời giải

Tương tự như trên ta rút ra quy luật của dãy là : Mỗi số hạng bằng số thứ tự nhân số thứ tự của số hạng đó.

          Vậy số hạng đầu tiên của dãy là : 1 x 1 = 1

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Vietjack official store
Đăng ký gói thi VIP

VIP +1 - Luyện thi tất cả các đề có trên Website trong 1 tháng

  • Hơn 100K đề thi thử, đề minh hoạ, chính thức các năm
  • Với 2tr+ câu hỏi theo các mức độ Nhận biết, Thông hiểu, Vận dụng
  • Tải xuống đề thi [DOCX] với đầy đủ đáp án
  • Xem bài giảng đính kèm củng cố thêm kiến thức
  • Bao gồm tất cả các bậc từ Tiểu học đến Đại học
  • Chặn hiển thị quảng cáo tăng khả năng tập trung ôn luyện

Mua ngay

VIP +3 - Luyện thi tất cả các đề có trên Website trong 3 tháng

  • Hơn 100K đề thi thử, đề minh hoạ, chính thức các năm
  • Với 2tr+ câu hỏi theo các mức độ Nhận biết, Thông hiểu, Vận dụng
  • Tải xuống đề thi [DOCX] với đầy đủ đáp án
  • Xem bài giảng đính kèm củng cố thêm kiến thức
  • Bao gồm tất cả các bậc từ Tiểu học đến Đại học
  • Chặn hiển thị quảng cáo tăng khả năng tập trung ôn luyện

Mua ngay

VIP +6 - Luyện thi tất cả các đề có trên Website trong 6 tháng

  • Hơn 100K đề thi thử, đề minh hoạ, chính thức các năm
  • Với 2tr+ câu hỏi theo các mức độ Nhận biết, Thông hiểu, Vận dụng
  • Tải xuống đề thi [DOCX] với đầy đủ đáp án
  • Xem bài giảng đính kèm củng cố thêm kiến thức
  • Bao gồm tất cả các bậc từ Tiểu học đến Đại học
  • Chặn hiển thị quảng cáo tăng khả năng tập trung ôn luyện

Mua ngay

VIP +12 - Luyện thi tất cả các đề có trên Website trong 12 tháng

  • Hơn 100K đề thi thử, đề minh hoạ, chính thức các năm
  • Với 2tr+ câu hỏi theo các mức độ Nhận biết, Thông hiểu, Vận dụng
  • Tải xuống đề thi [DOCX] với đầy đủ đáp án
  • Xem bài giảng đính kèm củng cố thêm kiến thức
  • Bao gồm tất cả các bậc từ Tiểu học đến Đại học
  • Chặn hiển thị quảng cáo tăng khả năng tập trung ôn luyện

Mua ngay