Câu hỏi:

13/07/2024 530

Có 5 em thi đấu cờ, theo thể thức vòng tròn. Sau mỗi trận đấu dù thua hay thắng hay hòa, mỗi ban đều đươc thưởng 1 quyển vở. Chứng minh rằng vào bất lúc nào cũng phải có ít nhất hai ban được thưởng cùng một số quyển vở

Quảng cáo

Trả lời:

verified
Giải bởi Vietjack

Vì số bạn là 5 số trận là 10 (chẵn) nên số trận mỗi bạn tham gia chẵn và bằng nhau. Mà bạn thắng, thua cũng như bạn hòa đều được 1 quyển vở. Nên tại bất kì thời điểm nào cũng có 2 bạn đều được thưởng số vở như nhau.

CÂU HỎI HOT CÙNG CHỦ ĐỀ

Lời giải

Nếu giảm thừa số thứ nhất đi 3 đơn vị thì tích sẽ giảm đi một số đơn vị bằng 3 lần thừa số thứ hai. Vậy ba lần thừa số thứ hai là :1099 - 628 = 471; Thừa số thứ hai là: 471 : 3 = 157; Thừa số thứ nhất là: 1099 : 157 = 7

Lời giải

số gồm 81 số 1 = 111111111(9 lần số 1)x10000000010000000001.......0000000001(9 lần 1000000001) Mà 111111111(9 số 1) chia hết cho 9 vì tổng các chữ số=9 và 1000000001.........1000000001( 9 lần 1000000001) có tổng câc chữ số là 9 nên chia hết cho 9 Vậy số đã cho chia hết cho 9x9=81

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP