Câu hỏi:
20/10/2020 752Chứng minh rằng trong 6 số tự nhiên bất kì thì có ít nhất 2 số mà hiệu của chúng chia hết cho 5
Sách mới 2k7: Bộ 20 đề minh họa Toán, Lí, Hóa, Văn, Sử, Địa…. form chuẩn 2025 của Bộ giáo dục (chỉ từ 49k/cuốn).
Quảng cáo
Trả lời:
Giả sử 6 số bất kỳ là a, b, c, d, e, f. Ta thấy rằng khi chia cho 5 dư 0,1,2,3,4. Ta thấy chỉ có 5 số dư vậy khi chọn 6 số bất kỳ sẽ có 2 số có cùng số dư nên hiệu của chúng sẽ kết thúc là số 0. Vậy trong 6 số bất kỳ có ít nhất 2 số mà hiệu của chúng chia hết cho 5.
CÂU HỎI HOT CÙNG CHỦ ĐỀ
Câu 4:
Chứng minh rằng tích của 5 số tự nhiên liên tiếp thì chia hết cho 5.
Câu 6:
Tính tổng các số tự nhiên có ba chữ số khác nhau chia cho 5 dư 1 lập từ các chữ số 4, 5, 6
Đề kiểm tra Giữa kì 2 Toán 6 có đáp án (Mới nhất) - Đề 1
Dạng 4: Một số bài tập nâng cao về lũy thừa
31 câu Trắc nghiệm Toán 6 Kết nối tri thức Bài 1: Tập hợp có đáp án
Đề kiểm tra Giữa kì 2 Toán 6 có đáp án (Mới nhất) - Đề 11
Dạng 5: Giải các bài toán thực tế có liên quan đến đoạn thẳng, độ dài đoạn thẳng và trung điểm của đoạn thẳng có đáp án
10 Bài tập Các bài toán thực tế sử dụng phép nhân và phép chia (có lời giải)
Đề kiểm tra Giữa kì 2 Toán 6 có đáp án (Mới nhất) - Đề 2
Dạng 1. Phép cộng các phân số có đáp án
Hãy Đăng nhập hoặc Tạo tài khoản để gửi bình luận