Câu hỏi:

13/07/2024 7,975

Viết các tập hợp sau:

a) Ư (15); Ư (27); ƯC (15,27);

b) Ư (16); Ư (20); Ư (30); ƯC (16,20,30);

c) B (20); B (30); BCNN (20,30);

d)  B (10); B (12); B (15); BCNN (10,12,15).

Quảng cáo

Trả lời:

verified
Giải bởi Vietjack

a) Ư (15) = {1; 3; 5; 15}; Ư(27) = {1; 3; 9; 27};

ƯC (15,27) = {1; 3}.

b) Ư(16) = (1; 2; 4; 8; 16}; Ư(20) = {1; 2; 4; 5; 10; 20};

Ư(30) = {1; 2; 3; 5; 6; 10; 15; 30}; ƯC (16,20,30) ={1; 2}.

c) B (20) = {0; 20; 40; 60;...}; B(30) = {0; 30; 60; 90; 120; ...};

BCNN (20,30) = 60.

d) B (10) = (0; 10; 20; 30; 40;...}; B(12) = {0; 12; 24; 36;...};

B (15) = {0; 15; 30; 45;...}; BCNN (10,12,15) = 60.

CÂU HỎI HOT CÙNG CHỦ ĐỀ

Lời giải

a) Với p = 2 thì p + 4; p + 8 không là số nguyên tố.

Với p = 3 thì p + 4; p + 8 là các số nguyên tố.

Nếu p > 3 mà p là số nguyên tố => p = 3k +1 hoặc p = 3k +2 (k ϵ N*)

Ta thấy nếu p = 3k + 1 thì p + 8 = 3k + l + 8 = 3k + 9=> p chia hết cho 3 (loại).

Ta thấy nếu p = 3k + 2 thì p + 4 = 3k + 2 + 4 = 3k + 6 => p chia hết cho 3 (loại).

Vậy ta đã chứng minh được p = 3 là giá trị duy nhất thỏa mãn điều kiện đề bài.

b) Tương tự 21A.

p = 3 là giá trị duy nhất thỏa mãn điều kiện đề bài.

Lời giải

Gọi số đĩa được chia là a (đĩa, a N*)

Vì 96 cái bánh và 84 cái kẹo được chia đều vào mỗi đĩa nên 96 chia hết cho a; 84 chia hết cho a. Lại có a là lớn nhất nên a = ƯCLN(96,84)

Ta có: 96 = 25 . 3; 84 = 22 . 3 . 7

Suy ra a = 22 . 3 = 12

Lúc đó, mỗi đĩa có số bánh là: 96 : 12 = 8 (cái).

Lúc đó, mỗi đĩa có số kẹo là: 84 : 12 = 7 (cái).

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Vietjack official store
Đăng ký gói thi VIP

VIP +1 - Luyện thi tất cả các đề có trên Website trong 1 tháng

  • Hơn 100K đề thi thử, đề minh hoạ, chính thức các năm
  • Với 2tr+ câu hỏi theo các mức độ Nhận biết, Thông hiểu, Vận dụng
  • Tải xuống đề thi [DOCX] với đầy đủ đáp án
  • Xem bài giảng đính kèm củng cố thêm kiến thức
  • Bao gồm tất cả các bậc từ Tiểu học đến Đại học
  • Chặn hiển thị quảng cáo tăng khả năng tập trung ôn luyện

Mua ngay

VIP +3 - Luyện thi tất cả các đề có trên Website trong 3 tháng

  • Hơn 100K đề thi thử, đề minh hoạ, chính thức các năm
  • Với 2tr+ câu hỏi theo các mức độ Nhận biết, Thông hiểu, Vận dụng
  • Tải xuống đề thi [DOCX] với đầy đủ đáp án
  • Xem bài giảng đính kèm củng cố thêm kiến thức
  • Bao gồm tất cả các bậc từ Tiểu học đến Đại học
  • Chặn hiển thị quảng cáo tăng khả năng tập trung ôn luyện

Mua ngay

VIP +6 - Luyện thi tất cả các đề có trên Website trong 6 tháng

  • Hơn 100K đề thi thử, đề minh hoạ, chính thức các năm
  • Với 2tr+ câu hỏi theo các mức độ Nhận biết, Thông hiểu, Vận dụng
  • Tải xuống đề thi [DOCX] với đầy đủ đáp án
  • Xem bài giảng đính kèm củng cố thêm kiến thức
  • Bao gồm tất cả các bậc từ Tiểu học đến Đại học
  • Chặn hiển thị quảng cáo tăng khả năng tập trung ôn luyện

Mua ngay

VIP +12 - Luyện thi tất cả các đề có trên Website trong 12 tháng

  • Hơn 100K đề thi thử, đề minh hoạ, chính thức các năm
  • Với 2tr+ câu hỏi theo các mức độ Nhận biết, Thông hiểu, Vận dụng
  • Tải xuống đề thi [DOCX] với đầy đủ đáp án
  • Xem bài giảng đính kèm củng cố thêm kiến thức
  • Bao gồm tất cả các bậc từ Tiểu học đến Đại học
  • Chặn hiển thị quảng cáo tăng khả năng tập trung ôn luyện

Mua ngay