Câu hỏi:
12/07/2024 1,604Chứng minh rằng trong 6 số tự nhiên bất kì thì có ít nhất 2 số mà hiệu của chúng chia hết cho 5.
Sale Tết giảm 50% 2k7: Bộ 20 đề minh họa Toán, Lí, Hóa, Văn, Sử, Địa…. form chuẩn 2025 của Bộ giáo dục (chỉ từ 49k/cuốn).
Quảng cáo
Trả lời:
Sơ đồ con đường | Lời giải chi tiết |
| Giả sử 6 số bất kỳ là a, b, c, d, e, f. Ta thấy rằng khi chia cho 5 dư 0,1,2,3,4. Ta thấy chỉ có 5 số dư vậy khi chọn 6 số bất kỳ sẽ có 2 số có cùng số dư nên hiệu của chúng sẽ kết thúc là số 0. Vậy trong 6 số bất kỳ có ít nhất 2 số mà hiệu của chúng chia hết cho 5. |
CÂU HỎI HOT CÙNG CHỦ ĐỀ
Câu 6:
Số M chia 5 dư 2 và N chia 5 dư 3 thì P=2017M+2016N chia 5 dư mấy?
Dạng 4: Một số bài tập nâng cao về lũy thừa
31 câu Trắc nghiệm Toán 6 KNTT Bài 1: Tập hợp có đáp án
Đề kiểm tra giữa học kì 2 Toán 6 có đáp án (Mới nhất) (Đề 1)
Đề thi Cuối học kỳ 2 Toán 6 có đáp án (Đề 1)
19 câu Trắc nghiệm Toán 6 KNTT Bài 1: Tập hợp có đáp án (Phần 2)
Đề kiểm tra Giữa kì 2 Toán 6 có đáp án (Mới nhất) - Đề 1
Dạng 4. Quy tắc dấu ngoặc có đáp án
Bài tập: Tập hợp. Phần tử của tập hợp chọn lọc, có đáp án
về câu hỏi!