Câu hỏi:
12/07/2024 9,001Cho tam giác ABC cân tại A . Đường trung trực của cạnh AC cắt tia CB tại điểm D. Trên tia đối của tia AD lấy điểm E sao cho AE = BD. Chứng minh.:
a) Chứng minh ADC cân;
b) Chứng minh ;
c) Chứng minh AD = CE;
d) Lấy F là trung điểm của DE. Chứng minh CF là đường trung trực của DE.
Sách mới 2k7: Tổng ôn Toán, Lí, Hóa, Văn, Sử, Địa…. kỳ thi tốt nghiệp THPT Quốc gia 2025, đánh giá năng lực (chỉ từ 110k).
Quảng cáo
Trả lời:
CÂU HỎI HOT CÙNG CHỦ ĐỀ
Câu 1:
Cho tam giác ABC cân tại A, M là trung điểm của BC. ME vuông góc với AB, MF vuông góc với AC. Chứng minh:
a) AM là trung trực của của BC;
b) ME = MF và AM là trung trực của EF;
Câu 2:
Cho tam giác ABC, đường phân giác AD. Trên tia AC lấy điểm E sao cho AE = AB. Chứng minh:
a) DB = DE;
b) AD là đường trung trực của BE.
Câu 3:
Cho góc xOy khác góc bẹt Oz là tia phân giác của góc xOy. Gọi M là một điểm bất kì thuộc tia Oz. Qua M vẽ đường thẳng a vuông góc với Ox tại A, cắt Oy tại C và vẽ đường thẳng b vuông góc với Oy tại B, cắt Ox tại D. Chứng minh:
a) Điểm O thuộc đường trung trực của AB;
b) OM là đường trung trực của AB; Điểm M thuộc đường trung trực của CD.
Câu 4:
Cho tam giác ABC nhọn, đường cao AH. Lấy các điểm P và Q lần lượt đối xứng với H qua AB; AC.
a) Chứng minh AP = AQ.
b) Cho . Tính số đo góc
c) Gọi I , K lần lượt là giao điểm của PQ với AB, AC. Chứng minh và .
d) Chứng minh HA là tia phân giác của .
Câu 5:
Cho tam giác ABC có AB < AC. Trên cạnh AC lấy điểm D sao cho CD = AB. Hai đường trung trực của BD và AC cắt nhau tại E. Chứng minh:
a)
b) Điểm E cách đều hai cạnh AB và AC.
Câu 6:
Cho tam giác DEF có DE = DF. Lấy điểm K nằm trong tam giác sao cho KE = KF. Kẻ KP vuông góc với DE (P thuộc DE), KQ vuông góc với DF (Q thuộc DF). Chứng minh:
a) K thuộc đường trung trực của EF và PQ;
b) DK là đường trung trực của EF và PQ. Từ đó suy ra PQ//EF.
về câu hỏi!