Câu hỏi:
12/07/2024 1,245Cho hình thang vuông ABCD (), có CD = 2AB = 2AD. Kẻ BH vuông góc với CD.
a) Chứng minh rằng tứ giác ABHD là hình vuông.
b) Gọi M là trung điểm của BH. Chứng minh rằng A đối xứng với C qua M.
c) Kẻ DI vuông góc với AC. DI, DM cắt AH lần lượt tại P và Q. Chứng minh:
d) Tứ giác BPDQ là hình gì?
Sách mới 2k7: 30 đề đánh giá năng lực DHQG Hà Nội, Tp. Hồ Chí Minh, BKHN 2025 mới nhất (600 trang - chỉ từ 140k).
Quảng cáo
Trả lời:
a) Vẽ hình đúng đến câu a
Chứng minh được ABHD là hình vuông
b) Chứng minh được ABCH là hình bình hành
Có M là trung điểm đường chéo BH
Suy ra M là trung điểm đường chéo AC. Hay A, C đối xứng qua M
c) Chứng minh:
Chỉ ra đủ các điều kiện để khẳng định:
d) Chỉ ra các điều kiện: BI = BQ = DQ = DI
Kết luận BPDQ là hình thoi.
CÂU HỎI HOT CÙNG CHỦ ĐỀ
Câu 1:
Tứ giác có các đỉnh là trung điểm các cạnh có hai đường chéo vuông góc là:
về câu hỏi!