Câu hỏi:

13/07/2024 423

Kiểm tra xem các số sau là hợp số hay số nguyên tố bằng cách dùng dấu hiệu của chia hết hoặc tra bảng số nguyên tố:

89 ; 97 ; 125 ; 541 ; 2 013 ; 2 018

Sách mới 2k7: Tổng ôn Toán, Lí, Hóa, Văn, Sử, Địa…. kỳ thi tốt nghiệp THPT Quốc gia 2025, đánh giá năng lực (chỉ từ 110k).

Tổng ôn toán Tổng ôn lý Các môn khác

Quảng cáo

Trả lời:

verified
Giải bởi Vietjack

+) Vì 89 chỉ có 2 ước là 1 và 89 nên 89 là số nguyên tố

+) Vì 97 chỉ có 2 ước là 1 và 97 nên 97 là số nguyên tố

+) Vì 125 có tận cùng là 5 nên 125 ⁝ 5, nên ngoài 2 ước là 1 và 125 còn có thêm ước là 5. Do đó 125 là hợp số.

+) Vì 541 chỉ có 2 ước là 1 và 541 nên 541 là số nguyên tố

+) Vì 2 013 có tổng các chữ số là 2 + 0 + 1 + 3 = 6 ⁝ 3; nên 2 013 ⁝ 3, vì thế ngoài 2 ước là 1 và 2 013 còn có thêm ước là 3. Do đó 2 013 là hợp số.

+) Vì 2 018 có chữ số tận cùng là 8 nên 2018 ⁝ 2 vì thế ngoài 2 ước là 1 và 2 018 còn có thêm ước là 2. Do đó 2 018 là hợp số.

Vậy: Các số nguyên tố là: 89 ; 97 ; 541

Các hợp số là: 125 ; 2 013; 2 018.

CÂU HỎI HOT CÙNG CHỦ ĐỀ

Câu 1:

Phân tích số 75 ra thừa số nguyên tố là:

Xem đáp án » 03/12/2021 11,566

Câu 2:

Các khẳng định sau đúng hay sai? Vì sao?

a) Ước nguyên tố của 30 là 5 và 6

b) Tích của hai số nguyên bất kì luôn là số lẻ

c) Ước nguyên tố nhỏ nhất của số chẵn là 2

d) Mọi bội của 3 đều là hợp số

e) Mọi số chẵn đều là hợp số.

Xem đáp án » 13/07/2024 10,376

Câu 3:

Một lớp có 30 học sinh. Cô giáo muốn chia lớp thành các nhóm để thực hiện các dự án học tập nhỏ. Biết rằng, các nhóm đều có số người bằng nhau, số người trong một nhóm là các số nguyên tố. Hỏi có bao nhiêu cách chia?

Xem đáp án » 03/12/2021 4,714

Câu 4:

Trong các số sau: 16; 17; 20; 21; 23; 97. Có bao nhiêu số là hợp số?

Xem đáp án » 03/12/2021 4,368

Câu 5:

Phân tích 70 ra thừa số nguyên tố ta được: 70 = 2x.5y.7z. Tổng x + y + z = ?

Xem đáp án » 03/12/2021 4,330

Câu 6:

Cho A là tập hợp các số nguyên tố nhỏ hơn 30. Chọn đáp án đúng.

Xem đáp án » 03/12/2021 3,318

Câu 7:

Phân tích 36 ra tích các thừa số nguyên tố bằng sơ đồ cây.

Xem đáp án » 13/07/2024 3,107

Bình luận


Bình luận
Đăng ký gói thi VIP

VIP 1 - Luyện thi tất cả các đề có trên Website trong 1 tháng

  • Được thi tất cả các đề của các lớp có trên Khoahoc.vietjack.com
  • Ngân hàng câu hỏi trắc nghiệm theo các mức độ Nhận biết, Thông hiểu, Vận dụng, Vận dụng cao.
  • Luyện chuyên sâu, rèn tốc độ với trọn bộ đề thi thử, đề minh họa, chính thức các năm.
  • Hỏi bài tập với đội ngũ chuyên môn cao của chúng tôi.

Đặt mua

VIP 2 - Luyện thi tất cả các đề có trên Website trong 3 tháng

  • Được thi tất cả các đề của các lớp có trên Khoahoc.vietjack.com
  • Ngân hàng câu hỏi trắc nghiệm theo các mức độ Nhận biết, Thông hiểu, Vận dụng, Vận dụng cao.
  • Luyện chuyên sâu, rèn tốc độ với trọn bộ đề thi thử, đề minh họa, chính thức các năm.
  • Hỏi bài tập với đội ngũ chuyên môn cao của chúng tôi.

Đặt mua

VIP 3 - Luyện thi tất cả các đề có trên Website trong 6 tháng

  • Được thi tất cả các đề của các lớp có trên Khoahoc.vietjack.com
  • Ngân hàng câu hỏi trắc nghiệm theo các mức độ Nhận biết, Thông hiểu, Vận dụng, Vận dụng cao.
  • Luyện chuyên sâu, rèn tốc độ với trọn bộ đề thi thử, đề minh họa, chính thức các năm.
  • Hỏi bài tập với đội ngũ chuyên môn cao của chúng tôi.

Đặt mua

VIP 4 - Luyện thi tất cả các đề có trên Website trong 12 tháng

  • Siêu tiết kiệm - Được thi tất cả các đề của các lớp có trên Khoahoc.vietjack.com
  • Ngân hàng câu hỏi trắc nghiệm theo các mức độ Nhận biết, Thông hiểu, Vận dụng, Vận dụng cao.
  • Luyện chuyên sâu, rèn tốc độ với trọn bộ đề thi thử, đề minh họa, chính thức các năm.
  • Hỏi bài tập với đội ngũ chuyên môn cao của chúng tôi.

Đặt mua

Sách cho 2k7 ôn luyện THPT-vs-DGNL