Một đại hội bộ binh có ba trung đội: trung đội I có 24 chiến sĩ, trung đội II có 28 chiến sĩ, trung đội III có 36 chiến sĩ. Trong cuộc diễu binh, cả ba trung đội phải xếp thành các hàng dọc đều nhau mà không có chiến sĩ nào trong mỗi trung đội bị lẻ hàng. Hỏi có thể xếp được nhiều nhất bao nhiêu hàng dọc?
Quảng cáo
Trả lời:
Vì trong cuộc diễu binh, cả ba trung đội phải xếp thành các hàng dọc đều nhau mà không có chiến sĩ nào trong mỗi trung đội bị lẻ hàng nên số hàng dọc là ƯC(24; 28; 36).
Mặt khác để xếp được nhiều nhất số hàng dọc thì số hàng dọc là ƯCLN(24; 28; 36)
Ta có:
24 =
28 =
36 =
Ta thấy 2 là thừa số nguyên tố chung của 24; 28 và 36. Số mũ nhỏ nhất của 2 là 2 nên ƯCLN(24; 28; 36) = = 4
Vậy có thể xếp được nhiều nhất 4 hàng dọc.
Hot: 1000+ Đề thi giữa kì 1 file word cấu trúc mới 2025 Toán, Văn, Anh... lớp 1-12 (chỉ từ 60k). Tải ngay
CÂU HỎI HOT CÙNG CHỦ ĐỀ
Câu 1
A. a và b không có ước chung nào khác 1.
B. a và b có ƯCLN(a, b) = 1.
C. Cả A và B đều đúng.
D. Cả A và B đều sai.
Lời giải
Đáp án C
Phân số được gọi là phân số tối giản nếu a và b không có ước chung nào khác 1, nghĩa là ƯCLN(a, b) = 1.
Lời giải
Có nhiều ví dụ về hai số có ƯCLN bằng 1 mà cả hai đều là hợp số, chẳng hạn ta có hai ví dụ sau:
+) 6 và 35
Vì 6 = 2.3; 35 = 5.7. Hai số này không có thừa số nguyên tố chung nên ƯCLN bằng 1 nhưng 6 chia hết cho 2 nên 6 là hợp số; 35 chia hết cho 5 nên 35 là hợp số.
+) 10 và 27
Vì 10 = 2.5; 27 = 33. Hai số này không có thừa số nguyên tố chung nên ƯCLN bằng 1 nhưng 10 chia hết cho 2 nên 10 là hợp số; 27 chia hết cho 3 nên 27 là hợp số.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.