Câu hỏi:

12/07/2024 2,605

Lịch can Chi

Một số nước phương Đông, trong đó có Việt Nam, gọi tên năm âm lịch bằng cách ghép tên của một trong 10 can (theo thứ tự là Giáp, Ất, Bính, Đinh, Mậu, Kỷ, Canh, Tân, Nhâm, Quý) với tên của một trong 12 chi (theo thứ tự là Tỷ, Sửu, Dần, Mão, Thìn, Tỵ, Ngọ, Mùi, Thân, Dậu, Tuất, Hợi). Đầu tiên, Giáp được ghép với Tý thành năm Giáp Tý. Cứ 10 năm, Giáp được lặp lại. Cứ 12 năm, Tý được lặp lại:

Lịch can Chi. Một số nước phương Đông, trong đó có Việt Nam, gọi tên năm âm lịch

Giải thích tại sao cứ 60 năm thì năm Giáp Tý được lặp lại?

Quảng cáo

Trả lời:

verified
Giải bởi Vietjack

Vì cứ 10 năm, can Giáp được lặp lại. Cứ 12 năm, chi Tý được lặp lại, nên số năm Giáp Tý được lặp lại là bội chung của 10 và 12. Và số năm ít nhất năm Giáp Tý lặp lại là bội chung nhỏ nhất của 10 và 12. 

Phân tích 10 và 12 ra thừa số nguyên tố ta được:

10 = 2 . 5

12 = 2 . 2 . 3 = 22 . 3

Các thừa số nguyên tố chung và riêng của 10 và 12 là 2, 3, 5 với số mũ lớn nhất lần lượt là: 2, 1, 1.

Khi đó: BCNN(10, 12) = 22 . 3 . 5 = 60.

Vậy cứ sau 60 năm thì năm Giáp Tý được lặp lại.

CÂU HỎI HOT CÙNG CHỦ ĐỀ

Lời giải

a) Ta có, 7 và 13 đều là các số nguyên tố 

Nên 7 và 13 cũng là hai số nguyên tố cùng nhau

Do đó: BCNN(7, 13) = 7 . 13 = 91. 

b) Ta có: 54 = 2 . 27 = 2 . 33 

108 = 4 . 27 = 22 . 33 

Các thừa số nguyên tố chung và riêng của 54 và 108 là 2 và 3, tương ứng với các số mũ lớn nhất lần lượt là 2 và 3

Khi đó: BCNN(54, 108) = 22 . 3= 4 . 27 = 108.

c) Ta có: 21 = 3 . 7

30 = 3 . 10 = 3 . 2 . 5; 70 = 7. 10 = 7 . 2 . 5

Các thừa số nguyên tố chung và riêng của 21, 30, 70 là 2, 3, 5, 7; chúng đều có số mũ lớn nhất là 1.

Do đó: BCNN(21, 30, 70) = 2 . 3. 5 . 7 = 210. 

Lời giải

a) + Để tìm các ước của 7 ta lấy 7 lần lượt chia cho các số tự nhiên từ 1 đến 7, các phép chia hết là: 7 : 1 = 7; 7 : 7 = 1

Do đó: các ước của 7 là: 1; 7 

+ Để tìm các ước của 8 ta lấy 8 lần lượt chia cho các số tự nhiên từ 1 đến 8, các phép chia hết là: 8 : 1 = 8; 8 : 2 = 4; 8 : 4 = 2; 8 : 8 = 1.

Các ước của 8 là: 1; 2; 4; 8.

+ Từ đó suy ra ƯC(7, 8) = 1 nên ƯCLN(7, 8) = 1.

b) Vì ƯCLN(7, 8) = 1 (theo câu a) nên hai số 7 và 8 là hai số nguyên tố cùng nhau. 

c) Ta có: 7 = 71; 8 = 23

Các thừa số nguyên tố chung và riêng là 7 và 2 với số mũ cao nhất lần lượt là 1 và 3.

Do đó BCNN(7, 8) = 71 . 23 = 56 

Mà 7 . 8 = 56

Hay ta nói bội chung nhỏ nhất của hai số nguyên tố cùng nhau 7 và 8 chính bằng tích của hai số 7 và 8. 

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Vietjack official store
Đăng ký gói thi VIP

VIP +1 - Luyện thi tất cả các đề có trên Website trong 1 tháng

  • Hơn 100K đề thi thử, đề minh hoạ, chính thức các năm
  • Với 2tr+ câu hỏi theo các mức độ Nhận biết, Thông hiểu, Vận dụng
  • Tải xuống đề thi [DOCX] với đầy đủ đáp án
  • Xem bài giảng đính kèm củng cố thêm kiến thức
  • Bao gồm tất cả các bậc từ Tiểu học đến Đại học
  • Chặn hiển thị quảng cáo tăng khả năng tập trung ôn luyện

Mua ngay

VIP +3 - Luyện thi tất cả các đề có trên Website trong 3 tháng

  • Hơn 100K đề thi thử, đề minh hoạ, chính thức các năm
  • Với 2tr+ câu hỏi theo các mức độ Nhận biết, Thông hiểu, Vận dụng
  • Tải xuống đề thi [DOCX] với đầy đủ đáp án
  • Xem bài giảng đính kèm củng cố thêm kiến thức
  • Bao gồm tất cả các bậc từ Tiểu học đến Đại học
  • Chặn hiển thị quảng cáo tăng khả năng tập trung ôn luyện

Mua ngay

VIP +6 - Luyện thi tất cả các đề có trên Website trong 6 tháng

  • Hơn 100K đề thi thử, đề minh hoạ, chính thức các năm
  • Với 2tr+ câu hỏi theo các mức độ Nhận biết, Thông hiểu, Vận dụng
  • Tải xuống đề thi [DOCX] với đầy đủ đáp án
  • Xem bài giảng đính kèm củng cố thêm kiến thức
  • Bao gồm tất cả các bậc từ Tiểu học đến Đại học
  • Chặn hiển thị quảng cáo tăng khả năng tập trung ôn luyện

Mua ngay

VIP +12 - Luyện thi tất cả các đề có trên Website trong 12 tháng

  • Hơn 100K đề thi thử, đề minh hoạ, chính thức các năm
  • Với 2tr+ câu hỏi theo các mức độ Nhận biết, Thông hiểu, Vận dụng
  • Tải xuống đề thi [DOCX] với đầy đủ đáp án
  • Xem bài giảng đính kèm củng cố thêm kiến thức
  • Bao gồm tất cả các bậc từ Tiểu học đến Đại học
  • Chặn hiển thị quảng cáo tăng khả năng tập trung ôn luyện

Mua ngay