Câu hỏi:

17/12/2021 383

Cho a là số tự nhiên có 2 004 chữ số và chia hết cho 9. Gọi b là tổng các chữ số của a; c là tổng các chữ số của b và d là tổng các chữ số của c. Tính d.

Quảng cáo

Trả lời:

verified
Giải bởi Vietjack

Do a chia hết cho 9 nên tổng các chữ số của a chia hết cho 9. Mặt khác b là tổng các chữ số của a nên b chia hết cho 9.

Do b chia hết cho 9 nên tổng các chữ số của b chia hết cho 9. Mặt khác c là tổng các chữ số của b nên c chia hết cho 9.

Do c chia hết cho 9 nên tổng các chữ số của c chia hết cho 9. Mặt khác d là tổng các chữ số của c nên d chia hết cho 9.

Vì a là số tự nhiên có 2 004 chữ số, mỗi chữ số của a đều không vượt quá 9 nên b ≤ 2 004.9 = 18 036. Nghĩa là b có 5 chữ số.

Suy ra c < 9 + 9 + 9 + 9 = 9.5 = 45. Mặt khác c ≠ 0 và c chia hết cho 9 nên suy ra c ∈ {9; 18; 27; 36}.

Ta có d là tổng các chữ số của c nên d = 9 = 1 + 8 = 2 + 7 = 3 + 6.

Vậy d = 9. 

CÂU HỎI HOT CÙNG CHỦ ĐỀ

Lời giải

a) Các số tự nhiên có hai chữ số chia cho 3 dư 1 là: 10; 13; …; 97.

Số các số tự nhiên có hai chữ số chia cho 3 dư 1 là: (97 – 10):3 + 1 = 30 số.

Vậy có 30 số tự nhiên có hai chữ số chia cho 3 dư 1.

b) Các số tự nhiên có ba chữ số chia cho 9 dư 2 là: 101; 110; 119; 128; 237; …; 992.

Số các số tự nhiên có ba chữ số chia cho 9 dư 2 là: (992 – 101): 9 + 1 = 100.

Vậy có 100 số tự nhiên có ba chữ số chia cho 9 dư 2.

c) Ta có: ab+ba = 10a + b + 10b + a = 11a + 11b = 11.(a + b)

Vì 11 không chia hết cho 9 nên a + b chia hết cho 9.

Mà a, b là các chữ số nên a, b ∈ {0; 1; 2; 3; 4; 5; 6; 7; 8; 9}

Các cặp số (a; b) là: (1; 8), (8; 1), (7; 2), (2; 7), (6; 3) (3; 6), (4; 5), (5; 4), (9; 9), (9; 0) thỏa mãn tổng chia hết cho 9.

Do đó ab ∈ {18;81,72;27;63;36;45;54;99;90}.

Vậy có tất cả 10 số tự nhiên ab thỏa mãn bài toán.

Lời giải

a) Ta có: 1 + 2 + 3 + 3 = 9 chia hết cho 3 nên 1 223 chia hết cho 3;

Ta có: 4 + 2 + 3 + 1 + 2 = 12 chia hết cho 3 nên 42 312 chia hết cho 3;

Ta có: 7 + 2 + 0 + 3 + 6 = 18 chia hết cho 3 nên 72 036 chia hết cho 3;

Do đó: 1 233 + 42 312 + 72 036 chia hết cho 3.

Vậy A = 1 233 + 42 312 + 72 036 chia hết cho 3.

b) B = 111 + 222 + 333 + … + 999

= 111 + 2.111 + 3.111 + … + 9.111

= 111.(1 + 2 + 3 + … + 9)

Ta có: 1 + 1 + 1 = 3 chia hết cho 3 nên 111 chia hết cho 3.

Do đó 111.(1 + 2 + 3 + … + 9) chia hết cho 3.

Vậy B = 111 + 222 + 333 + … + 999 chia hết cho 3.

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Vietjack official store
Đăng ký gói thi VIP

VIP +1 - Luyện thi tất cả các đề có trên Website trong 1 tháng

  • Hơn 100K đề thi thử, đề minh hoạ, chính thức các năm
  • Với 2tr+ câu hỏi theo các mức độ Nhận biết, Thông hiểu, Vận dụng
  • Tải xuống đề thi [DOCX] với đầy đủ đáp án
  • Xem bài giảng đính kèm củng cố thêm kiến thức
  • Bao gồm tất cả các bậc từ Tiểu học đến Đại học
  • Chặn hiển thị quảng cáo tăng khả năng tập trung ôn luyện

Mua ngay

VIP +3 - Luyện thi tất cả các đề có trên Website trong 3 tháng

  • Hơn 100K đề thi thử, đề minh hoạ, chính thức các năm
  • Với 2tr+ câu hỏi theo các mức độ Nhận biết, Thông hiểu, Vận dụng
  • Tải xuống đề thi [DOCX] với đầy đủ đáp án
  • Xem bài giảng đính kèm củng cố thêm kiến thức
  • Bao gồm tất cả các bậc từ Tiểu học đến Đại học
  • Chặn hiển thị quảng cáo tăng khả năng tập trung ôn luyện

Mua ngay

VIP +6 - Luyện thi tất cả các đề có trên Website trong 6 tháng

  • Hơn 100K đề thi thử, đề minh hoạ, chính thức các năm
  • Với 2tr+ câu hỏi theo các mức độ Nhận biết, Thông hiểu, Vận dụng
  • Tải xuống đề thi [DOCX] với đầy đủ đáp án
  • Xem bài giảng đính kèm củng cố thêm kiến thức
  • Bao gồm tất cả các bậc từ Tiểu học đến Đại học
  • Chặn hiển thị quảng cáo tăng khả năng tập trung ôn luyện

Mua ngay

VIP +12 - Luyện thi tất cả các đề có trên Website trong 12 tháng

  • Hơn 100K đề thi thử, đề minh hoạ, chính thức các năm
  • Với 2tr+ câu hỏi theo các mức độ Nhận biết, Thông hiểu, Vận dụng
  • Tải xuống đề thi [DOCX] với đầy đủ đáp án
  • Xem bài giảng đính kèm củng cố thêm kiến thức
  • Bao gồm tất cả các bậc từ Tiểu học đến Đại học
  • Chặn hiển thị quảng cáo tăng khả năng tập trung ôn luyện

Mua ngay