Câu hỏi:

13/07/2024 6,232

Tìm số tự nhiên n, biết:

a) 2 + 4 + 6 + … + 2.(n – 1) + 2n = 210. 

b) 1 + 3 + 5 + … + (2n – 3) + (2n – 1) = 225.

Quảng cáo

Trả lời:

verified
Giải bởi Vietjack

a) Số số hạng của VT là: (2n – 2):2 + 1 = n – 1 + 1 = n số.

Khi đó: 2 + 4 + 6 + … + 2.(n – 1) + 2n = (2n + 2).n:2 = n.(n+1).

Theo đầu bài, ta có: n(n + 1) = 210 

Ta có: 

Bài 104 trang 31 sách bài tập Toán lớp 6 Tập 1

Suy ra 210 = 2.3.4.5= 14.15.

Vậy n = 14.

b) Số số hạng của VT là: (2n – 1 – 1):2 + 1 = (2n – 2):2 + 1 = n – 1 + 1 = n.

Khi đó 1 + 3 + 5 + … + (2n – 3) + (2n – 1) = (2n – 1 + 1).n:2 = 2n.n:2 = n2.

Ta có 223 = 32.52 = 152.

Vậy n = 15.

CÂU HỎI HOT CÙNG CHỦ ĐỀ

Lời giải

a) Ta có: 3n + 13 = 3n + 3 + 10 = 3.(n + 1) + 10.

Vì 3.(n + 1) chia hết cho n + 1 nên để 3n + 13 chia hết cho n + 1 thì 10 phải chia hết cho n + 1 hay n + 1 là ước của 10.

Ta có: 10 = 2.5 nên các ước của 10 là: Ư(10) = {1; 2; 5; 10}.

Ta có bảng sau:

     n + 1

     1

     2   

       5

      10

       n

      0

     1

       4

      9

Vậy n ∈ {0; 1; 4; 9}.

b) 5n + 19 chia hết cho 2n + 1.

Vì 5n + 19 chia hết cho 2n + 1 nên 2(5n + 19) chia hết cho 2n + 1

Xét 2(5n + 19) = 10n + 38 = 10n + 5 + 33 = 5(2n + 1) + 33.

Vì 5.(2n + 1) chia hết cho 2n + 1 nên để 2(5n + 19) chia hết cho 2n + 1 thì 33 phải chia hết cho 2n + 1 hay 2n + 1 thuộc ước của 33.

Ta có bảng sau:

      2n + 1

     1

      3 

      11

       33

        n

     0

     1

      5

       16

Vậy n ∈ {0; 1; 5; 16}. 

Lời giải

Ta có: 7a = 7. 72.113 = 73.113.

Suy ra 7a có tất cả (3 + 1).(3 + 1) = 4.4 = 16 ước.

Ta có: 11a = 11.72.113 = 72.114.

Suy ra 11a có tất cả (2 + 1).(4 + 1) = 3.5 = 15 ước.

Ta có: 13a = 13.72.113.

Suy ra 13a có tất cả (2 + 1).(3 + 1).(1 + 1) = 3.4.2 = 24 ước.

Vậy số 13a là số nhiều ước nhất.

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Vietjack official store
Đăng ký gói thi VIP

VIP +1 - Luyện thi tất cả các đề có trên Website trong 1 tháng

  • Hơn 100K đề thi thử, đề minh hoạ, chính thức các năm
  • Với 2tr+ câu hỏi theo các mức độ Nhận biết, Thông hiểu, Vận dụng
  • Tải xuống đề thi [DOCX] với đầy đủ đáp án
  • Xem bài giảng đính kèm củng cố thêm kiến thức
  • Bao gồm tất cả các bậc từ Tiểu học đến Đại học
  • Chặn hiển thị quảng cáo tăng khả năng tập trung ôn luyện

Mua ngay

VIP +3 - Luyện thi tất cả các đề có trên Website trong 3 tháng

  • Hơn 100K đề thi thử, đề minh hoạ, chính thức các năm
  • Với 2tr+ câu hỏi theo các mức độ Nhận biết, Thông hiểu, Vận dụng
  • Tải xuống đề thi [DOCX] với đầy đủ đáp án
  • Xem bài giảng đính kèm củng cố thêm kiến thức
  • Bao gồm tất cả các bậc từ Tiểu học đến Đại học
  • Chặn hiển thị quảng cáo tăng khả năng tập trung ôn luyện

Mua ngay

VIP +6 - Luyện thi tất cả các đề có trên Website trong 6 tháng

  • Hơn 100K đề thi thử, đề minh hoạ, chính thức các năm
  • Với 2tr+ câu hỏi theo các mức độ Nhận biết, Thông hiểu, Vận dụng
  • Tải xuống đề thi [DOCX] với đầy đủ đáp án
  • Xem bài giảng đính kèm củng cố thêm kiến thức
  • Bao gồm tất cả các bậc từ Tiểu học đến Đại học
  • Chặn hiển thị quảng cáo tăng khả năng tập trung ôn luyện

Mua ngay

VIP +12 - Luyện thi tất cả các đề có trên Website trong 12 tháng

  • Hơn 100K đề thi thử, đề minh hoạ, chính thức các năm
  • Với 2tr+ câu hỏi theo các mức độ Nhận biết, Thông hiểu, Vận dụng
  • Tải xuống đề thi [DOCX] với đầy đủ đáp án
  • Xem bài giảng đính kèm củng cố thêm kiến thức
  • Bao gồm tất cả các bậc từ Tiểu học đến Đại học
  • Chặn hiển thị quảng cáo tăng khả năng tập trung ôn luyện

Mua ngay