Câu hỏi:

13/07/2024 2,141

Học sinh lớp 6A nhận được phần thưởng từ Liên đội nhà trường, mỗi học sinh đều được nhận số phần thưởng như nhau. Cô tổng phụ trách đã phát hết 215 quyển vở và 129 quyển truyện cho học sinh lớp 6A. Số học sinh của lớp 6A là bao nhiêu, biết rằng số học sinh của lớp nhiều hơn 10 học sinh?

Quảng cáo

Trả lời:

verified
Giải bởi Vietjack

Vì mỗi học sinh đều nhận được phần thưởng là như nhau nên số học sinh vừa là ước của 215 vừa là ước của 129.

Ta có: 215 = 5.43; 129 = 3.43.

Do đó 43 vừa là ước của 215 vừa là ước của 129 và thỏa mãn lớn hơn 10 nên số học sinh của lớp 6A là 43 học sinh.

CÂU HỎI HOT CÙNG CHỦ ĐỀ

Lời giải

a) Ta có: 3n + 13 = 3n + 3 + 10 = 3.(n + 1) + 10.

Vì 3.(n + 1) chia hết cho n + 1 nên để 3n + 13 chia hết cho n + 1 thì 10 phải chia hết cho n + 1 hay n + 1 là ước của 10.

Ta có: 10 = 2.5 nên các ước của 10 là: Ư(10) = {1; 2; 5; 10}.

Ta có bảng sau:

     n + 1

     1

     2   

       5

      10

       n

      0

     1

       4

      9

Vậy n ∈ {0; 1; 4; 9}.

b) 5n + 19 chia hết cho 2n + 1.

Vì 5n + 19 chia hết cho 2n + 1 nên 2(5n + 19) chia hết cho 2n + 1

Xét 2(5n + 19) = 10n + 38 = 10n + 5 + 33 = 5(2n + 1) + 33.

Vì 5.(2n + 1) chia hết cho 2n + 1 nên để 2(5n + 19) chia hết cho 2n + 1 thì 33 phải chia hết cho 2n + 1 hay 2n + 1 thuộc ước của 33.

Ta có bảng sau:

      2n + 1

     1

      3 

      11

       33

        n

     0

     1

      5

       16

Vậy n ∈ {0; 1; 5; 16}. 

Lời giải

a) Số số hạng của VT là: (2n – 2):2 + 1 = n – 1 + 1 = n số.

Khi đó: 2 + 4 + 6 + … + 2.(n – 1) + 2n = (2n + 2).n:2 = n.(n+1).

Theo đầu bài, ta có: n(n + 1) = 210 

Ta có: 

Bài 104 trang 31 sách bài tập Toán lớp 6 Tập 1

Suy ra 210 = 2.3.4.5= 14.15.

Vậy n = 14.

b) Số số hạng của VT là: (2n – 1 – 1):2 + 1 = (2n – 2):2 + 1 = n – 1 + 1 = n.

Khi đó 1 + 3 + 5 + … + (2n – 3) + (2n – 1) = (2n – 1 + 1).n:2 = 2n.n:2 = n2.

Ta có 223 = 32.52 = 152.

Vậy n = 15.

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Vietjack official store
Đăng ký gói thi VIP

VIP +1 - Luyện thi tất cả các đề có trên Website trong 1 tháng

  • Hơn 100K đề thi thử, đề minh hoạ, chính thức các năm
  • Với 2tr+ câu hỏi theo các mức độ Nhận biết, Thông hiểu, Vận dụng
  • Tải xuống đề thi [DOCX] với đầy đủ đáp án
  • Xem bài giảng đính kèm củng cố thêm kiến thức
  • Bao gồm tất cả các bậc từ Tiểu học đến Đại học
  • Chặn hiển thị quảng cáo tăng khả năng tập trung ôn luyện

Mua ngay

VIP +3 - Luyện thi tất cả các đề có trên Website trong 3 tháng

  • Hơn 100K đề thi thử, đề minh hoạ, chính thức các năm
  • Với 2tr+ câu hỏi theo các mức độ Nhận biết, Thông hiểu, Vận dụng
  • Tải xuống đề thi [DOCX] với đầy đủ đáp án
  • Xem bài giảng đính kèm củng cố thêm kiến thức
  • Bao gồm tất cả các bậc từ Tiểu học đến Đại học
  • Chặn hiển thị quảng cáo tăng khả năng tập trung ôn luyện

Mua ngay

VIP +6 - Luyện thi tất cả các đề có trên Website trong 6 tháng

  • Hơn 100K đề thi thử, đề minh hoạ, chính thức các năm
  • Với 2tr+ câu hỏi theo các mức độ Nhận biết, Thông hiểu, Vận dụng
  • Tải xuống đề thi [DOCX] với đầy đủ đáp án
  • Xem bài giảng đính kèm củng cố thêm kiến thức
  • Bao gồm tất cả các bậc từ Tiểu học đến Đại học
  • Chặn hiển thị quảng cáo tăng khả năng tập trung ôn luyện

Mua ngay

VIP +12 - Luyện thi tất cả các đề có trên Website trong 12 tháng

  • Hơn 100K đề thi thử, đề minh hoạ, chính thức các năm
  • Với 2tr+ câu hỏi theo các mức độ Nhận biết, Thông hiểu, Vận dụng
  • Tải xuống đề thi [DOCX] với đầy đủ đáp án
  • Xem bài giảng đính kèm củng cố thêm kiến thức
  • Bao gồm tất cả các bậc từ Tiểu học đến Đại học
  • Chặn hiển thị quảng cáo tăng khả năng tập trung ôn luyện

Mua ngay