Quảng cáo

Trả lời:

verified
Giải bởi Vietjack

Lời giải:

Đặt tên: đỉnh O và các tia Ox, Oy, Oz, Ot như hình vẽ.

Mỗi hình dưới đây có bao nhiêu góc

Các góc tạo thành: ∠xOy, ∠yOz, ∠zOt, ∠xOz, ∠yOt, ∠xOt  .

Vậy hình a) có 6 góc.

b) Đặt tên: đỉnh A và các tia Aa, Ab, Ac, Ad, Ae, Ag như hình vẽ.

Mỗi hình dưới đây có bao nhiêu góc

Các góc tạo thành: ∠aAb, ∠bAc, ∠cAd, ∠dAe, ∠eAg, ∠gAa, ∠aAc, ∠cAe, ∠eAa, ∠aAd, ∠bAd, ∠dAg, ∠gAb, ∠bAe, ∠cAg     .

Vậy hình b) có 15 góc.

Nhận xét: 

a) Số đỉnh chung của các tia là: 1;

Số các tia là: 4;

Số góc tạo thành: 4 . 3 : 2 = 6 (góc).

b) Số đỉnh chung của các tia là: 1;

Số các tia là: 6;

Số góc tạo thành: 6 . 5 : 2 = 15 (góc).

Vậy nếu đỉnh chung có n tia thì:

Tổng số các góc được tạo thành là:  n . (n − 1) : 2 (góc).

Bình luận


Bình luận

CÂU HỎI HOT CÙNG CHỦ ĐỀ

Lời giải

Lời giải:

Vẽ hai đường thẳng trước, có hai khả năng xảy ra:

* Khả năng 1: Hai đường thẳng đó song song với nhau.

Ta tiếp tục vẽ thêm một đường thẳng thứ ba song song hoặc cắt cả hai đường thẳng kia.

- Trường hợp 1: Đường thẳng thứ ba song song cả hai đường thẳng kia thì ba đường thẳng này không có giao điểm nào.

 Ba đường thẳng phân biệt có thể tạo ra bao nhiêu góc

Vì ba đường thẳng này không có giao điểm nào nên không có góc nào tạo ra trong trường hợp này.

- Trường hợp 2: Đường thẳng thứ ba cắt cả hai đường thẳng kia thì ta có hai giao điểm A và B.

Từ hai điểm gốc A, B, đặt các tia Aa, Ab, Ac, Bd, Be, Bg (như hình vẽ).

Ba đường thẳng phân biệt có thể tạo ra bao nhiêu góc

Các góc tạo thành: ∠aAb, ∠bAc, ∠aAe, ∠eAc, ∠aAc, ∠dBe, ∠eBg, ∠dBb, ∠bBg, ∠dBg, ∠bAe, ∠bBe.

Vậy hình trên có 12 góc.

* Khả năng 2: Hai đường thẳng đó cắt nhau cắt nhau tại điểm A.

Ta tiếp tục vẽ thêm một đường thẳng thứ ba cắt cả hai đường thẳng kia.

- Trường hợp 1: Đường thẳng thứ ba cắt cả hai đường thẳng kia và đi qua giao điểm A thì ta có một giao điểm A.

Từ điểm gốc A, đặt các tia Aa, Ab, Ac, Ad, Ae, Ag (như hình vẽ).

Ba đường thẳng phân biệt có thể tạo ra bao nhiêu góc

Các góc tạo thành: ∠aAb, ∠bAc, ∠cAd, ∠dAe, ∠eAg, ∠gAa, ∠aAc, ∠cAe, ∠eAa, ∠aAd, ∠bAd, ∠dAg, ∠gAb, ∠bAe, ∠cAg      .

Vậy hình trên có 15 góc.

- Trường hợp 2: Đường thẳng thứ ba cắt cả hai đường thẳng kia và không đi qua giao điểm A thì ta có ba giao điểm A, B và C (như hình vẽ).

Từ ba điểm gốc A, B, C đặt các tia Ah, Ak, Bp, Bq, Cm, Cn (như hình vẽ).

Ba đường thẳng phân biệt có thể tạo ra bao nhiêu góc

Các góc tạo thành: ∠hAk, ∠kAn, ∠hAp, ∠pAn, ∠hAn, ∠pAk, ∠pBq, ∠pBm, ∠qBk, ∠kBm, ∠mBq, ∠pBk, ∠mCn, ∠mCh, ∠nCq, ∠qCh, ∠nCh, ∠mCq      .

Vậy hình trên có 18 góc.

*Nhận xét: 

- Hình thứ nhất: Ba đường thẳng không có điểm chung nên không có góc nào tạo ra. 

- Hình thứ hai: 2 đỉnh chung, mỗi đỉnh có 4 tia.

Vậy số góc tạo thành là 2 . 4 . 3 : 2 = 12 góc.

- Hình thứ ba: 1 đỉnh chung, có 6 tia.

Vậy số góc tạo thành là 6 . 5 : 2 = 15 (góc).

- Hình thứ tư: 3 đỉnh chung, mỗi đỉnh có 4 tia.

Vậy số góc tạo thành là 3 . 4 . 3 : 2 = 18 (góc).

Vậy nếu đỉnh chung có n tia thì:

Tổng số các góc được tạo thành là:  n . (n − 1) : 2 (góc).

Lời giải

Lời giải:

Các góc nào có trong hình sau đây

Dễ thấy:

a) Góc ABC là góc bẹt (đỉnh A, hai tia là BA, BC). Góc ABC có trong hình.

b) Góc ACD có đỉnh C, hai tia là CA và CD. Góc ACD có trong hình.

c) Góc ADC không có trong hình do không nối tia DA.

d) Góc BCD có đỉnh C, hai tia là CB và CD. Góc BCD có trong hình.

e) Góc EBD không có trong hình do không nối tia BE, BD.

g) Góc AEB không có trong hình do không nối tia EA, EB.

Do đó các góc có trong hình là: góc ABC, góc ACD, góc BCD.

Vậy các phương án phù hợp là: a), b), d).

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Vietjack official store
Đăng ký gói thi VIP

VIP +1 - Luyện thi tất cả các đề có trên Website trong 1 tháng

  • Hơn 100K đề thi thử, đề minh hoạ, chính thức các năm
  • Với 2tr+ câu hỏi theo các mức độ Nhận biết, Thông hiểu, Vận dụng
  • Tải xuống đề thi [DOCX] với đầy đủ đáp án
  • Xem bài giảng đính kèm củng cố thêm kiến thức
  • Bao gồm tất cả các bậc từ Tiểu học đến Đại học
  • Chặn hiển thị quảng cáo tăng khả năng tập trung ôn luyện

Mua ngay

VIP +3 - Luyện thi tất cả các đề có trên Website trong 3 tháng

  • Hơn 100K đề thi thử, đề minh hoạ, chính thức các năm
  • Với 2tr+ câu hỏi theo các mức độ Nhận biết, Thông hiểu, Vận dụng
  • Tải xuống đề thi [DOCX] với đầy đủ đáp án
  • Xem bài giảng đính kèm củng cố thêm kiến thức
  • Bao gồm tất cả các bậc từ Tiểu học đến Đại học
  • Chặn hiển thị quảng cáo tăng khả năng tập trung ôn luyện

Mua ngay

VIP +6 - Luyện thi tất cả các đề có trên Website trong 6 tháng

  • Hơn 100K đề thi thử, đề minh hoạ, chính thức các năm
  • Với 2tr+ câu hỏi theo các mức độ Nhận biết, Thông hiểu, Vận dụng
  • Tải xuống đề thi [DOCX] với đầy đủ đáp án
  • Xem bài giảng đính kèm củng cố thêm kiến thức
  • Bao gồm tất cả các bậc từ Tiểu học đến Đại học
  • Chặn hiển thị quảng cáo tăng khả năng tập trung ôn luyện

Mua ngay

VIP +12 - Luyện thi tất cả các đề có trên Website trong 12 tháng

  • Hơn 100K đề thi thử, đề minh hoạ, chính thức các năm
  • Với 2tr+ câu hỏi theo các mức độ Nhận biết, Thông hiểu, Vận dụng
  • Tải xuống đề thi [DOCX] với đầy đủ đáp án
  • Xem bài giảng đính kèm củng cố thêm kiến thức
  • Bao gồm tất cả các bậc từ Tiểu học đến Đại học
  • Chặn hiển thị quảng cáo tăng khả năng tập trung ôn luyện

Mua ngay