Câu hỏi:
11/05/2022 815Cho hệ bất phương trình sau:
a) Mỗi bất phương trình (1) và (2) có là bất phương trình bậc nhất hai ẩn không?
b) Chỉ ra một nghiệm chung của hai bất phương trình (1) và (2) trong hệ trên.
Sách mới 2k7: 30 đề đánh giá năng lực DHQG Hà Nội, Tp. Hồ Chí Minh, BKHN 2025 mới nhất (600 trang - chỉ từ 140k).
Quảng cáo
Trả lời:
a) Bất phương trình (1) có dạng ax + by < c (a và b không đồng thời bằng 0, với a = 1, b = – 1, c = 3).
Bất phương trình (2) có dạng ax + by > c (a và b không đồng thời bằng 0, với a = 1, b = 2, c = – 2)
Vậy mỗi bất phương trình (1) và (2) đều là bất phương trình bậc nhất hai ẩn x và y.
b) Chọn x0 = 2, y0 = 1. Khi đó:
(1) ⇔ 2 – 1 < 3 ⇔ 1 < 3 (luôn đúng) nên (2; 1) là nghiệm của bất phương trình (1)
(2) ⇔ 2 + 2.1 > – 2 ⇔ 4 > – 2 (luôn đúng) nên (2; 1) là nghiệm của bất phương trình (2)
Vậy cặp số (2; 1) là một nghiệm chung của hai bất phương trình (1) và (2) trong hệ trên.
Chú ý: Ta có thể chọn cặp số khác thỏa mãn là nghiệm chung của hai bất phương trình (1) và (2), chẳng hạn (1; 0), (4; 2),…
CÂU HỎI HOT CÙNG CHỦ ĐỀ
Câu 1:
Một phân xưởng sản xuất hai kiểu mũ. Thời gian để làm ra một chiếc mũ kiểu thứ nhất nhiều gấp hai lần thời gian làm ra chiếc mũ kiểu thứ hai. Nếu chỉ sản xuất toàn kiểu mũ thứ hai thì trong 1 giờ phân xưởng làm được 60 chiếc. Phân xưởng làm việc 8 tiếng mỗi ngày và thị trường tiêu thụ tối đa trong một ngày là 200 chiếc mũ kiểu thứ nhất và 240 chiếc mũ kiểu thứ hai. Tiền lãi khi bán một chiếc mũ kiểu thứ nhất là 24 nghìn đồng, một chiếc mũ kiểu thứ hai là 15 nghìn đồng. Tính số lượng mũ kiểu thứ nhất và kiểu thứ hai trong một ngày mà phân xưởng cần sản xuất để tiền lãi thu được là cao nhất.
Câu 2:
Kiểm tra xem mỗi cặp số (x; y) đã cho có là nghiệm của hệ bất phương trình tương ứng không?
a) (0; 2), (1; 0);
b) (– 1; – 3), (0; – 3).
Câu 3:
Miền không bị gạch trong mỗi Hình 12a, 12b là miền nghiệm của hệ bất phương trình nào cho ở dưới đây?
a)
b)
c)
Câu 6:
Quảng cáo sản phẩm trên truyền hình là một hoạt động quan trọng trong kinh doanh của các doanh nghiệp. Theo Thông báo số 10/2019, giá quảng cáo trên VTV1 là 30 triệu đồng cho 15 giây/1 lần quảng cáo vào khoảng 20h30; là 6 triệu đồng cho 15 giây/1 lần quảng cáo vào khung giờ 16h00 – 17h00. Một công ty dự định chi không quá 900 triệu đồng để quảng cáo trên VTV1 với yêu cầu quảng cáo về số lần phát như sau: ít nhất 10 lần quảng cáo vào khoảng 20h30 và không quá 50 lần quảng cáo vào khung giờ 16h00 – 17h00. Gọi x, y lần lượt là số lần phát quảng cáo vào khoảng 20h30 và vào khung giờ 16h00 – 17h00.
Trong toán học, các điều kiện ràng buộc đối với x và y để đáp ứng nhu cầu trên của công ty được thể hiện như thế nào?
về câu hỏi!