Câu hỏi:

12/07/2024 8,076

Biểu diễn miền nghiệm của hệ bất phương trình:

a) 2x3y<62x+y<2;

b) 4x+10y20    xy4      x2;

c) x2y5x+y2x0y3.

Quảng cáo

Trả lời:

verified
Giải bởi Vietjack

a) 2x3y<62x+y<2

+ Trên cùng một mặt phẳng tọa độ Oxy, vẽ các đường thẳng:

d1: 2x – 3y = 6;

d2: 2x + y = 2.

+ Gạch đi các phần không thuộc miền nghiệm của từng bất phương trình của hệ.

Biểu diễn miền nghiệm của hệ bất phương trình (ảnh 1)

Miền nghiệm của hệ bất phương trình là phần không gạch sọc ở hình trên không kể đường thẳng d1 và d2.

b) 4x+10y20    xy4      x2

+ Trên cùng một mặt phẳng tọa độ Oxy, vẽ các đường thẳng:

d1: 4x + 10y = 20;

d2: x – y = 4;

d3: x = – 2.

+ Gạch đi những phần không thuộc miền nghiệm của từng bất phương trình của hệ.

Biểu diễn miền nghiệm của hệ bất phương trình (ảnh 2)

Miền nghiệm của hệ là phần không bị gạch trong hình kể cả biên.

A là giao điểm của d1 và d3 nên A(– 2; 2,8)

B là giao điểm của d1 và d2 nên B 307;27

C là giao điểm của d2 và d3 nên C(– 2; – 6).

Vậy miền nghiệm của hệ bất phương trình là miền tam giác ABC.

c) x2y5x+y2x0y3

+ Trên cùng một mặt phẳng tọa độ Oxy, vẽ các đường thẳng:

d1: x – 2y = 5;

d2: x + y = 2;

d3: x = 0 là trục tung;

d4: y = 3.

+ Gạch đi những phần không thuộc miền nghiệm của từng bất phương trình của hệ.

Biểu diễn miền nghiệm của hệ bất phương trình (ảnh 3)

Vậy miền nghiệm của hệ bất phương trình là miền tứ giác ABCD với A(0; 2), B(0; 3), C(11; 3), D(3; – 1).

CÂU HỎI HOT CÙNG CHỦ ĐỀ

Lời giải

Gọi số nhân viên ca I cần huy động là x (nhân viên), số nhân viên ca II cần huy động là y (nhân viên) (x, y > 0; x,  y ).

Do ca I từ 10h00 – 18h00 và ca II từ 14h00 – 22h00 nên số nhân viên trong thời gian từ 14h00 – 18h00 chính là tổng số nhân của 2 ca và là x + y (nhân viên), x + y > 0.

Vì cần tối thiểu 6 nhân viên trong khoảng 10h00 – 18h00 (ca I) nên x ≥ 6.

Cần tối thiểu 24 nhân viên trong khoảng thời gian cao điểm 14h00 – 18h00 (giao giữa hai ca) nên x + y ≥ 24.

Cần không quá 20 nhân viên trong khoảng 18h00 – 22h00 (trong khoảng thời gian này chỉ còn lại y nhân viên của ca II làm) nên 0 < y ≤ 20.

Do số lượng khách trong khoảng 14h00 – 22h00 thường đông hơn nên nhà hàng cần số nhân viên ca II ít nhất phải gấp đôi số nhân viên ca I nên y ≥ 2x.

Quan sát bảng đã cho ta thấy:

+ Tiền lương trong 1 giờ ở ca I là 20 000 đồng nên 1 nhân viên làm việc 1 ngày trong ca I có tiền lương là 20 000 . 8 = 160 000 đồng.

+ Tiền lương trong 1 giờ của ca II là 22 000 đồng nên 1 nhân viên làm việc 1 ngày trong ca II có tiền lương là 22 000 . 8 = 176 000 đồng.

Do đó tổng chi phí tiền lương cho x nhân viên ca I và y nhân viên ca II trong một ngày là T = 160 000x + 176 000y (đồng).

Khi đó bài toán đã cho đưa về: Tìm x, y là nghiệm của hệ bất phương trình bậc nhất hai ẩn x>0x+y>0x6x+y240<y20y2x  (*) sao cho T = 160 000x + 176 000y có giá trị là nhỏ nhất.

Trước hết, ta xác định miền nghiệm của hệ bất phương trình (*) bằng cách vẽ đồ thị.

Một chuỗi nhà hàng ăn nhanh bán đồ ăn từ 10h00 sáng đến 22h00 mỗi ngày. Nhân viên phục vụ của nhà hàng (ảnh 2)

Miền nghiệm của hệ bất phương trình (*) là miền tứ giác ABCD với A(6; 18), B(6; 20), C(10; 20), D(8; 16).

Người ta chứng minh được: Biểu thức T = 160 000x + 176 000 y có giá trị nhỏ nhất tại một trong các đỉnh của tứ giác ABCD.

Tính giá trị của biểu thức T tại các cặp số (x; y) là tọa độ các đỉnh của tứ giác, ta có:

TA = 160 000 . 6 + 176 000 . 18 = 4 128 000

TB = 160 000 . 6 + 176 000 . 20 = 4 480 000

TC = 160 000 . 10 + 176 000 . 20 = 5 120 000

TD = 160 000 . 8 + 176 000 . 16 = 4 096 000

So sánh các giá trị trên ta thấy T nhỏ nhất bằng 4 096 000 khi x = 8 và y = 16 ứng với tọa độ đỉnh D.

Vậy để chi phí tiền lương mỗi ngày là ít nhất thì chuỗi nhà hàng cần huy động 8 nhân viên ca I và 16 nhân viên ca II, khi đó chi phí tiền lương cho 1 ngày là 4 096 000 đồng.

Lời giải

a) Gọi x, y lần lượt là số lượng cốc đồ uống thứ nhất và thứ hai mà bác Ngọc nên uống mỗi ngày để đáp ứng nhu cầu cần thiết đối với số ca – lo và số đơn vị vitamin hấp thụ (điều kiện x, y ).

Tổng số ca – lo mà x cốc thứ nhất và y cốc thứ hai cung cấp là: 60x + 60y (ca – lo).

Tổng số đơn vị vitamin A mà x cốc thứ nhất và y cốc thứ hai cung cấp là: 12x + 6y (đơn vị).

Tổng số đơn vị vitamin C mà x cốc thứ nhất và y cốc thứ hai cung cấp là: 10x + 30y (đơn vị).

 Vì tối thiểu hằng ngày cần 300 ca – lo, 36 đơn vị vitamin A và 90 đơn vị vitamin C.

Nên ta có hệ bất phương trình sau: 60x+60y30012x+6y3610x+30y90x+y52x+y6x+3y9  (I).

b) Số cốc cho đồ uống thứ nhất và thứ hai thỏa mãn yêu cầu bài toán là nghiệm của hệ (I).

+ Phương án 1: Chọn x = 1, y = 4, thay vào từng bất phương trình của hệ:

1 + 4 ≥ 5 là mệnh đề đúng;

2 . 1 + 4 ≥ 6 là mệnh đề đúng;

1 + 3. 4 ≥ 9 là mệnh đề đúng.

Vậy (1; 4) là nghiệm chung của các bất phương trình của hệ nên (1; 4) là nghiệm của hệ (I).

Do đó, bác Ngọc có thể chọn 1 cốc thứ nhất và 4 cốc thứ hai.

 + Phương án 2: Chọn x = 3, y = 4, thay vào từng bất phương trình của hệ:

3 + 4 ≥ 5 là mệnh đề đúng;

2 . 3 + 4 ≥ 6 là mệnh đề đúng;

3 + 3 . 4 ≥ 9 là mệnh đề đúng.

Vậy (3; 4) là nghiệm chung của các bất phương trình của hệ nên (3; 4) là nghiệm của hệ (I).

Do đó, bác Ngọc có thể chọn 3 cốc thứ nhất và 4 cốc thứ hai.

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Vietjack official store
Đăng ký gói thi VIP

VIP +1 - Luyện thi tất cả các đề có trên Website trong 1 tháng

  • Hơn 100K đề thi thử, đề minh hoạ, chính thức các năm
  • Với 2tr+ câu hỏi theo các mức độ Nhận biết, Thông hiểu, Vận dụng
  • Tải xuống đề thi [DOCX] với đầy đủ đáp án
  • Xem bài giảng đính kèm củng cố thêm kiến thức
  • Bao gồm tất cả các bậc từ Tiểu học đến Đại học
  • Chặn hiển thị quảng cáo tăng khả năng tập trung ôn luyện

Mua ngay

VIP +3 - Luyện thi tất cả các đề có trên Website trong 3 tháng

  • Hơn 100K đề thi thử, đề minh hoạ, chính thức các năm
  • Với 2tr+ câu hỏi theo các mức độ Nhận biết, Thông hiểu, Vận dụng
  • Tải xuống đề thi [DOCX] với đầy đủ đáp án
  • Xem bài giảng đính kèm củng cố thêm kiến thức
  • Bao gồm tất cả các bậc từ Tiểu học đến Đại học
  • Chặn hiển thị quảng cáo tăng khả năng tập trung ôn luyện

Mua ngay

VIP +6 - Luyện thi tất cả các đề có trên Website trong 6 tháng

  • Hơn 100K đề thi thử, đề minh hoạ, chính thức các năm
  • Với 2tr+ câu hỏi theo các mức độ Nhận biết, Thông hiểu, Vận dụng
  • Tải xuống đề thi [DOCX] với đầy đủ đáp án
  • Xem bài giảng đính kèm củng cố thêm kiến thức
  • Bao gồm tất cả các bậc từ Tiểu học đến Đại học
  • Chặn hiển thị quảng cáo tăng khả năng tập trung ôn luyện

Mua ngay

VIP +12 - Luyện thi tất cả các đề có trên Website trong 12 tháng

  • Hơn 100K đề thi thử, đề minh hoạ, chính thức các năm
  • Với 2tr+ câu hỏi theo các mức độ Nhận biết, Thông hiểu, Vận dụng
  • Tải xuống đề thi [DOCX] với đầy đủ đáp án
  • Xem bài giảng đính kèm củng cố thêm kiến thức
  • Bao gồm tất cả các bậc từ Tiểu học đến Đại học
  • Chặn hiển thị quảng cáo tăng khả năng tập trung ôn luyện

Mua ngay