Câu hỏi:
17/05/2022 1,300
Một vật nhỏ dao động điều hòa trên trục Ox xung quanh vị trí cân bằng O, với biên độ 10 cm và chu kỳ 2s. Trong khoảng thời gian 0,5 s quãng đường vật có thể đi được là
Quảng cáo
Trả lời:
Phương pháp:
+ Sử dụng biểu thức tính quãng đường lớn nhất vật đi được trong thời gian \[\Delta t:{S_{\max }} = 2A\sin \frac{{\Delta \varphi }}{2}\]
+ Sử dụng biểu thức tính quãng đường nhỏ nhất vật đi được trong thời gian \[\Delta t:{S_{\min }} = 2A\left( {1 - \cos \frac{{\Delta \varphi }}{2}} \right)\]
Cách giải:
+ Quãng đường lớn nhất vật đi được trong thời gian \[\Delta t:{S_{\max }} = 2A\sin \frac{{\Delta \varphi }}{2}\]
+ Quãng đường nhỏ nhất vật đi được trong thời gian \[\Delta t:{S_{\min }} = 2A\left( {1 - \cos \frac{{\Delta \varphi }}{2}} \right)\]
Với \[ \Rightarrow \left\{ {\begin{array}{*{20}{l}}{{S_{\max }} = 2.10\sin \frac{\pi }{4} = 10\sqrt 2 cm}\\{{S_{\min }} = 2.10\left( {1 - \cos \frac{\pi }{4}} \right) = 20 - 10\sqrt 2 cm}\end{array}} \right.\]
Quãng đường vật có thể đi được: \[{S_{\min }} \le S \le {S_{\max }} \Leftrightarrow 5,858m \le S \le 14,14m\]
⇒ Trong khoảng thời gian 0,5s quãng đường vật có thể đi được là: 8cm.
Chọn B.Hot: 500+ Đề thi thử tốt nghiệp THPT các môn, ĐGNL các trường ĐH... file word có đáp án (2025). Tải ngay
- 1000 câu hỏi lí thuyết môn Vật lí (Form 2025) ( 45.000₫ )
- 20 đề thi tốt nghiệp môn Vật lí (có đáp án chi tiết) ( 38.000₫ )
- Tổng ôn lớp 12 môn Toán, Lí, Hóa, Văn, Anh, Sinh Sử, Địa, KTPL (Form 2025) ( 36.000₫ )
- Bộ đề thi tốt nghiệp 2025 các môn Toán, Lí, Hóa, Văn, Anh, Sinh, Sử, Địa, KTPL (có đáp án chi tiết) ( 36.000₫ )
CÂU HỎI HOT CÙNG CHỦ ĐỀ
Lời giải
Phương pháp:
Sử dụng biểu thức tính dung kháng: \[{Z_C} = \frac{1}{{\omega C}}\]
Cách giải:
Dung kháng của tụ điện: \[{Z_C} = \frac{1}{{\omega C}}\]
Chọn C.Lời giải
Phương pháp:
+ Vận dụng biểu thức tính cảm kháng và dung kháng: \[\left\{ {\begin{array}{*{20}{l}}{{Z_L} = \omega L}\\{{Z_C} = \frac{1}{{\omega C}}}\end{array}} \right.\]
+ Sử dụng biểu thức tính hệ số công suất:
Cách giải:
+ Khi \[f = {f_2} = 50Hz:\cos {\varphi _2} = 1 \Rightarrow {Z_{{L_2}}} = {Z_{{C_2}}} \Leftrightarrow \frac{1}{{LC}} = \omega _2^2\]
+ Khi \[f = {f_1} = 25Hz:\left\{ {\begin{array}{*{20}{l}}{{Z_{{L_1}}} = \frac{{{\omega _1}}}{{{\omega _2}}}{Z_{{L_2}}} = \frac{{{Z_{{L_2}}}}}{2}}\\{{Z_{{C_1}}} = \frac{{{\omega _2}}}{{{\omega _1}}}{Z_{{C_2}}} = 2{Z_{{C_2}}} = 2{Z_{{L_2}}}}\end{array}} \right.\]
\[ \Rightarrow \cos {\varphi _1} = \frac{R}{{\sqrt {{R^2} + {{\left( {{Z_{{L_1}}} - {Z_{{C_1}}}} \right)}^2}} }} = \frac{R}{{\sqrt {{R^2} + \left( {\frac{{{Z_{{L_2}}}}}{2} - 2{Z_{{L_2}}}} \right)} }} = \frac{{\sqrt 2 }}{2}\] \[ \Rightarrow 2{R^2} = {R^2} + \frac{9}{4}Z_{{L_2}}^2 \Rightarrow {Z_{{L_2}}} = \frac{2}{3}R\]
+ Khi \[f = {f_3} = 75Hz:\left\{ {\begin{array}{*{20}{l}}{{Z_{{L_3}}} = \frac{{{\omega _3}}}{{{\omega _2}}}{Z_{{L_2}}} = \frac{{3{Z_{{L_2}}}}}{2}}\\{{Z_{{C_3}}} = \frac{{{\omega _2}}}{{{\omega _3}}}{Z_{{C_2}}} = \frac{2}{3}{Z_{{C_2}}} = \frac{2}{3}{Z_{{L_2}}}}\end{array}} \right.\]
\[ \Rightarrow \cos {\varphi _3} = \frac{R}{{\sqrt {{R^2} + {{\left( {{Z_{{L_3}}} - {Z_{{C_3}}}} \right)}^2}} }} = \frac{R}{{\sqrt {{R^2} + \left( {\frac{{3{Z_{{L_2}}}}}{2} - \frac{2}{3}{Z_{{L_2}}}} \right)} }} = 0,874\] Chọn B.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.