Câu hỏi:

18/05/2022 1,556

Vật sáng AB đặt trên trục chính và vuông góc với trục chính của một thấu kính hội tụ có tiêu cự 20cm. Để ảnh của vật cùng chiều với vật và cách thấu kính 30cm thì vật cách thấu kính một khoảng bằng bao nhiêu?

Quảng cáo

Trả lời:

verified
Giải bởi Vietjack

Phương pháp: 

Sử dụng công thức thấu kính: \(\frac{1}{d} + \frac{1}{{{d^\prime }}} = \frac{1}{f}\)

Cách giải: 

Ảnh cùng chiều với vật ảnh đó là ảnh ảo d'=-30cm

Tiêu cự của thấu kính hội tụ \(f = 20\;{\rm{cm}}\)

Áp dụng công thức thấu kính ta có: \(\frac{1}{f} = \frac{1}{d} + \frac{1}{{{d^\prime }}} \Leftrightarrow \frac{1}{{20}} = \frac{1}{d} + \frac{1}{{ - 30}} \Rightarrow d = 12\;{\rm{cm}}\)

Chọn D.

CÂU HỎI HOT CÙNG CHỦ ĐỀ

Câu 1

Lời giải

Phương pháp: 

Công thức liên hệ giữa tần số và bước sóng: \(f = \frac{c}{\lambda } \Rightarrow f - \frac{1}{\lambda }\)

Bước sóng theo thứ tự tăng dần: Tia tử ngoại, ánh sáng nhìn thấy, tia hồng ngoại 

Cách giải: 

Bảng thang sóng điện từ:  

Thứ tự giảm dần của tần số các sóng điện từ (ảnh 1)

\(f = \frac{c}{\lambda } \Rightarrow f - \frac{1}{\lambda }\)

Tần số các sóng điện từ theo thứ tự giảm dần là: Tia tử ngoại, ánh sáng nhìn thấy, tia hồng ngoại.

Chọn A. 

Lời giải

Phương pháp: 

+ Bước sóng: λ =vf

+ Điều kiện có cực đại giao thoa: \({d_2} - {d_1} = k\lambda ;k \in Z\)

Cách giải: 

Thực hiện giao thoa trên bề mặt chất lỏng với hai nguồn kết hợp A, B cách nhau 30cm dao động theo phương thẳng đứng với cùng phương trình (ảnh 1) 

Phương trình dao động của hai nguồn: 

\({u_A} = {u_B} = 5\cos \left( {20\pi t + \frac{{3\pi }}{4}} \right)({\rm{cm}};s)\)

Tốc độ truyền sóng: \(v = 0,2\;{\rm{m}}/{\rm{s}}\)

Bước sóng: λ =vf=2(cm)

Bài cho \(AB = 30\;{\rm{cm}} \Rightarrow {\rm{AB}} = 15\lambda \)

Áp dụng định lí Pitago trong tam giác vuông ABC ta có: \(A{C^2} = A{B^2} + B{C^2} \Rightarrow A{B^2} = A{C^2} - B{C^2}\)

Mà: d1=ACd2=CBd22-d12=(15λ)2(d2-d1)(d2+d1)=(15λ)2

Mặt khác: \({d_2} - {d_1} = k\lambda \left( 2 \right)\) (cực đại) 

Từ (1) và (2) \( \Rightarrow {d_2} + {d_1} = \frac{{225}}{k}\lambda \)

Để cực đại cùng pha thì k và \(\frac{{225}}{k}\) hoặc cùng chẵn hoặc cùng lẻ, ở đây chỉ có k lẻ thỏa mãn.

Lại có: \({d_2} + {d_1} > 15\lambda \) (tổng hai cạnh bất kì của một tam giác luôn lớn hơn cạnh còn lại)

225kλ >15λ k<15

Lập bảng tìm các giá trị của k thỏa mãn: 

k

9

225k

225 

75 

45 

25

Để gần B nhất thì \({\left( {{d_2} + {d_1}} \right)_{\min }} \Leftrightarrow {\left( {\frac{{225}}{k}\lambda } \right)_{\min }} \Leftrightarrow {k_{\max }} = 9\)

d2-d1=9λd2+d1=2259λd2=17λd1=8λ=8.2=16cm

Chọn D. 

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Câu 5

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Câu 6

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP