Câu hỏi:
18/05/2022 625Dao động của một vật là tổng hợp của hai dao động điều hòa cùng phương, có phương trình li độ lần lượt là \({x_1} = {A_1}\cos \left( {10t + \frac{\pi }{6}} \right)(cm);{x_2} = 4\cos (10t + \varphi )(cm)\) (t tính bằng s), \({A_1}\) có giá trị thay đổi được. Phương trình dao động tổng hợp của vật có dạng \(x = A\cos \left( {\omega t + \frac{\pi }{3}} \right)(cm)\). Độ lớn gia tốc lớn nhất của vật có thể nhận giá trị là
Sách mới 2k7: Tổng ôn Toán, Lí, Hóa, Văn, Sử, Địa…. kỳ thi tốt nghiệp THPT Quốc gia 2025, đánh giá năng lực (chỉ từ 110k).
Quảng cáo
Trả lời:
Phương pháp:
Sử dụng phương pháp giản đồ vecto
Định lí hàm sin: \(\frac{a}{{\sin \hat A}} = \frac{b}{{\sin \hat B}} = \frac{c}{{\sin \hat C}}\)
Gia tốc cực đại của dao động điều hòa: \({a_{\max }} = {\omega ^2}A\)
Cách giải:
Ta có giản đồ vecto:
Từ giản đồ vecto, áp dụng định lí hàm sin, ta có:
\(\frac{{{A_2}}}{{\sin \frac{\pi }{6}}} = \frac{A}{{\sin \varphi }} \Rightarrow \frac{A}{{\sin \varphi }} = \frac{4}{{\sin \frac{\pi }{6}}} = 8 \Rightarrow A = 8\sin \varphi \)
Để độ lớn gia tốc của vật đạt giá trị lớn nhất:
\({a_{\max }} \Leftrightarrow {A_{\max }} \Rightarrow {(\sin \varphi )_{\max }} = 1 \Rightarrow {A_{\max }} = 8(\;{\rm{cm}})\)
\( \Rightarrow {a_{\max }} = {\omega ^2}{A_{\max }} = {10^2}.8 = 800\left( {\;{\rm{cm}}/{{\rm{s}}^2}} \right) = 8\left( {\;{\rm{m}}/{{\rm{s}}^2}} \right)\)
Chọn C.
CÂU HỎI HOT CÙNG CHỦ ĐỀ
Câu 1:
Câu 2:
Câu 3:
Câu 4:
Câu 5:
Câu 6:
về câu hỏi!