Câu hỏi:

18/05/2022 761

Dao động của một vật là tổng hợp của hai dao động điều hòa cùng phương, có phương trình li độ lần lượt là \({x_1} = {A_1}\cos \left( {10t + \frac{\pi }{6}} \right)(cm);{x_2} = 4\cos (10t + \varphi )(cm)\) (t tính bằng s), \({A_1}\) có giá trị thay đổi được. Phương trình dao động tổng hợp của vật có dạng \(x = A\cos \left( {\omega t + \frac{\pi }{3}} \right)(cm)\). Độ lớn gia tốc lớn nhất của vật có thể nhận giá trị là

Quảng cáo

Trả lời:

verified
Giải bởi Vietjack

Phương pháp: 

Sử dụng phương pháp giản đồ vecto 

Định lí hàm sin: \(\frac{a}{{\sin \hat A}} = \frac{b}{{\sin \hat B}} = \frac{c}{{\sin \hat C}}\)

 Gia tốc cực đại của dao động điều hòa: \({a_{\max }} = {\omega ^2}A\)

Cách giải: 

Ta có giản đồ vecto: 

Dao động của một vật là tổng hợp của hai dao động điều hòa cùng phương, có phương trình li độ lần (ảnh 1)

Từ giản đồ vecto, áp dụng định lí hàm sin, ta có:

\(\frac{{{A_2}}}{{\sin \frac{\pi }{6}}} = \frac{A}{{\sin \varphi }} \Rightarrow \frac{A}{{\sin \varphi }} = \frac{4}{{\sin \frac{\pi }{6}}} = 8 \Rightarrow A = 8\sin \varphi \)

Để độ lớn gia tốc của vật đạt giá trị lớn nhất:

\({a_{\max }} \Leftrightarrow {A_{\max }} \Rightarrow {(\sin \varphi )_{\max }} = 1 \Rightarrow {A_{\max }} = 8(\;{\rm{cm}})\)

\( \Rightarrow {a_{\max }} = {\omega ^2}{A_{\max }} = {10^2}.8 = 800\left( {\;{\rm{cm}}/{{\rm{s}}^2}} \right) = 8\left( {\;{\rm{m}}/{{\rm{s}}^2}} \right)\)

 Chọn C. 

CÂU HỎI HOT CÙNG CHỦ ĐỀ

Câu 1

Lời giải

Phương pháp: 

Sử dụng lý thuyết đường sức điện 

Cách giải: 

Qua mỗi điểm trong điện trường ta chỉ có thể vẽ được một đường sức điện → A sai

Các đường sức điện không bao giờ cắt nhau → B đúng 

Nơi nào điện trường mạnh hơn thì nơi đó đường sức điện được vẽ mau hơn → C sai

Các đường sức điện xuất phát từ các điện tích dương và tận cùng ở các điện tích âm → D sai

Chọn B. 

Lời giải

Phương pháp: 

Định luật bảo toàn năng lượng điện từ: \({{\rm{W}}_d} = {{\rm{W}}_t} \Rightarrow \frac{1}{2}CU_0^2 = \frac{1}{2}LI_0^2\)

Công thức độc lập với thời gian:  \(\frac{{{q^2}}}{{q_0^2}} + \frac{{{i^2}}}{{I_0^2}} = 1\)

Chu kì dao động riêng của mạch: \(T = 2\pi \sqrt {LC} \)

Cách giải: 

Áp dụng định luật bảo toàn năng lượng điện từ trong mạch, ta có:

\({{\rm{W}}_{d{\rm{max}}}} = {{\rm{W}}_{t\max }} \Rightarrow \frac{1}{2}{\rm{CU}}_0^2 = \frac{1}{2}LI_0^2 \Rightarrow I_0^2 = \frac{{CU_0^2}}{L} = \frac{{C{{.12}^2}}}{{{{9.10}^{ - 3}}}} = 16000{\rm{C}}\)

Áp dụng công thức độc lập với thời gian, ta có: 

q2q02+i2I02=1q2C2U02+i2I02=1(24.10-9)2C2.122+(43 10-3)216000C=1

[1C=25.107C=4.10-9(F){1C= -1.109(loai)
Chu kì dao động riêng của mạch là: 

T=2πLC =2π9.10-34.10-9 =12π 10-6(s)=12π(μs)

Chọn A. 

Câu 4

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP