Câu hỏi:

18/05/2022 727

Đặt điện áp xoay chiều có giá trị hiệu dụng và tần số không đổi vào hai đầu đoạn mạch AB  mắc nối tiếp theo thứ tự gồm cuộn cảm thuần L, biến trở R và tụ điện C. Gọi ULR là điện áp hiệu dụng ở hai đầu đoạn mạch gồm cuộn cảm thuần L và biến trở R, UC là điện áp  hiệu dụng ở hai đầu tụ C, UL là điện áp hiệu dụng hai đầu cuộn cảm thuần L. Hình bên là đồ thị biểu diễn sự phụ  thuộc của, \[{U_{LR}},{U_L},{U_C}\] theo giá trị của biến trở R. Khi  \[R = 1,5{R_0}\] thì hệ số công suất của đoạn mạch AB xấp xỉ làĐặt điện áp xoay chiều có giá trị hiệu dụng và tần số không đổi vào hai đầu đoạn mạch AB  mắc nối tiếp theo thứ tự gồm cuộn cảm (ảnh 1)

Quảng cáo

Trả lời:

verified
Giải bởi Vietjack

Phương pháp: 

Điện áp hiệu dụng giữa hai đầu đoạn mạch chứa điện trở và cuộn dây thuần cảm:  \({U_{LR}} = \frac{{U\sqrt {{R^2} + Z_L^2} }}{{\sqrt {{R^2} + {{\left( {{Z_L} - {Z_C}} \right)}^2}} }}\)  
Điện áp hiệu dụng giữa hai đầu tụ điện:  \({U_C} = \frac{{U \cdot {Z_C}}}{{\sqrt {{R^2} + {{\left( {{Z_L} - {Z_C}} \right)}^2}} }}\)

Điện áp hiệu dụng giữa hai đầu cuộn dây: \({U_L} = \frac{{U \cdot {Z_L}}}{{\sqrt {{R^2} + {{\left( {{Z_L} - {Z_C}} \right)}^2}} }}\)  

Sử dụng kĩ năng đọc đồ thị 

Sử dụng phương pháp chuẩn hóa số liệu cos  

Hệ số công suất của mạch điện:  cosφ =RR2+(ZL-ZC)2

Cách giải: 

Ta có đồ thị: 

Đặt điện áp xoay chiều có giá trị hiệu dụng và tần số không đổi vào hai đầu đoạn mạch AB  mắc nối tiếp theo thứ tự gồm cuộn cảm (ảnh 1)

Điện áp hiệu dụng giữa hai đầu đoạn mạch gồm cuộn cảm thuần L và biến trở R, điện áp hiệu dụng hai đầu  tụ C, điện áp hiệu dụng hai đầu cuộn cảm thuần L là: 

\(\left\{ {\begin{array}{*{20}{l}}{{U_{RL}} = \frac{{U\sqrt {{R^2} + Z_L^2} }}{{\sqrt {{R^2} + {{\left( {{Z_L} - {Z_C}} \right)}^2}} }} = \frac{U}{{\sqrt {1 + \frac{{Z_C^2 - 2{Z_L}{Z_C}}}{{{R^2} + Z_L^2}}} }}}\\{{U_C} = \frac{{U.{Z_C}}}{{\sqrt {{R^2} + {{\left( {{Z_L} - {Z_C}} \right)}^2}} }}}\\{{U_L} = \frac{{U.{Z_L}}}{{\sqrt {{R^2} + {{\left( {{Z_L} - {Z_C}} \right)}^2}} }}}\end{array}} \right.\)

Nhận xét: khi R tăng có UC và UL giảm → đồ thị (3) là đồ thị URL

Từ đồ thị ta thấy đồ thị (3) không phụ thuộc vào R

Để URL không phụ thuộc vào R, ta có:

\({Z_C}^2 - 2{Z_L}{Z_C} = 0 \Rightarrow {Z_C} = 2{Z_L} \Rightarrow {U_C} = 2{U_L}\)

Ta thấy với mọi giá trị của R luôn có \({U_C} = 2{U_L} \to \) đồ thị (1) là UC, đồ thị (2) là UL

Lại có:  \({U_{RL}} = \frac{U}{{\sqrt {1 + \frac{0}{{{R^2} + Z_L^2}}} }} = U\)

Chuẩn hóa \({Z_L} = 1 \Rightarrow {Z_C} = 2\)

Tại giá trị \(R = {R_0} \Rightarrow {U_C} = {U_{RL}} = U\)

U.ZCR02+(ZL-ZC)2=UZC=R02+(ZL-ZC)2 2=R02+(1-2)2 R0=3

 Khi R=1,5R0cosφ =RR2+(ZL-ZC)2=1,53(1,53)2+(1-2)20,93

Chọn D. 

CÂU HỎI HOT CÙNG CHỦ ĐỀ

Câu 1

Lời giải

Phương pháp: 

Sử dụng lý thuyết đường sức điện 

Cách giải: 

Qua mỗi điểm trong điện trường ta chỉ có thể vẽ được một đường sức điện → A sai

Các đường sức điện không bao giờ cắt nhau → B đúng 

Nơi nào điện trường mạnh hơn thì nơi đó đường sức điện được vẽ mau hơn → C sai

Các đường sức điện xuất phát từ các điện tích dương và tận cùng ở các điện tích âm → D sai

Chọn B. 

Lời giải

Phương pháp: 

Định luật bảo toàn năng lượng điện từ: \({{\rm{W}}_d} = {{\rm{W}}_t} \Rightarrow \frac{1}{2}CU_0^2 = \frac{1}{2}LI_0^2\)

Công thức độc lập với thời gian:  \(\frac{{{q^2}}}{{q_0^2}} + \frac{{{i^2}}}{{I_0^2}} = 1\)

Chu kì dao động riêng của mạch: \(T = 2\pi \sqrt {LC} \)

Cách giải: 

Áp dụng định luật bảo toàn năng lượng điện từ trong mạch, ta có:

\({{\rm{W}}_{d{\rm{max}}}} = {{\rm{W}}_{t\max }} \Rightarrow \frac{1}{2}{\rm{CU}}_0^2 = \frac{1}{2}LI_0^2 \Rightarrow I_0^2 = \frac{{CU_0^2}}{L} = \frac{{C{{.12}^2}}}{{{{9.10}^{ - 3}}}} = 16000{\rm{C}}\)

Áp dụng công thức độc lập với thời gian, ta có: 

q2q02+i2I02=1q2C2U02+i2I02=1(24.10-9)2C2.122+(43 10-3)216000C=1

[1C=25.107C=4.10-9(F){1C= -1.109(loai)
Chu kì dao động riêng của mạch là: 

T=2πLC =2π9.10-34.10-9 =12π 10-6(s)=12π(μs)

Chọn A. 

Câu 4

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP